• 제목/요약/키워드: Abel Integral Equation

검색결과 5건 처리시간 0.019초

Reconstruction of the Electron Density Profile in O-mode Ultrashort Pulse Reflectometry using a Two-dimensional Finite Difference Time Domain

  • Roh, Young-Su
    • 조명전기설비학회논문지
    • /
    • 제27권7호
    • /
    • pp.52-58
    • /
    • 2013
  • The two-dimensional finite difference time domain algorithm is used to numerically reconstruct the electron density profile in O-mode ultrashort pulse reflectometry. A Gaussian pulse is employed as the source of a probing electromagnetic wave. The Gaussian pulse duration is chosen in such a manner as to have its frequency spectrum cover the whole range of the plasma frequency. By using a number of numerical band-pass filters, it is possible to compute the time delays of the frequency components of the reflected signal from the plasma. The electron density profile is reconstructed by substituting the time delays into the Abel integral equation. As a result of simulation, the reconstructed electron density profile agrees well with the assumed profile.

전리수소 영역의 물리량 측정을 위한 방출선 모형연구 (MODELING FOR PROBING THE PHYSICAL STATES OF HII REGIONS)

  • 성현일
    • 천문학논총
    • /
    • 제26권1호
    • /
    • pp.25-35
    • /
    • 2011
  • A diagnostic tool has been proposed to convert the observed surface distribution of hydrogen recombination line intensities into the radial distributions of the electron temperature and the density in HII regions. The observed line intensity is given by an integral of the volume emission coefficient along the line of sight, which comprises the Abel type integral equation for the volume emission coefficient. As the emission coefficient at a position is determined by the temperature and density of electrons at the position, the local emission coefficient resulted from the solution of the Abel equation gives the radial distribution of the temperature and the density. A test has been done on the feasibility of our diagnostic approach to probing of HII regions. From model calculations of an HII region of pure hydrogen, we have theoretically generated the observed surface brightness of hydrogen recombination line intensities and analyzed them by our diagnostic tool. The resulting temperatures and densities are then compared with the model values. For this case of uniform density, errors in the derived density are not large at all the positions. For the electron temperature, however, the largest errors appear at the central part of the HII region. The errors in the derived temperature decrease with the radial distance, and become negligible in the outer part of the model HII region.

A GENERALIZATION OF THE KINETIC EQUATION USING THE PRABHAKAR-TYPE OPERATORS

  • Dorrego, Gustavo Abel;Kumar, Dinesh
    • 호남수학학술지
    • /
    • 제39권3호
    • /
    • pp.401-416
    • /
    • 2017
  • Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have provided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at presenting solutions of certain general families of fractional kinetic equations using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al. [21].

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie;Liu, Jinxi
    • Structural Engineering and Mechanics
    • /
    • 제27권5호
    • /
    • pp.609-623
    • /
    • 2007
  • The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.

자유표면(自由表面)에 접착(接着)된 원통(圓筒)에 가(加)해진 축방향하중(軸方向荷重)으로 인(因)한 응력분포(應力分布) 및 변위(變位)에 대(對)한 수학적(數學的) 해석(解析)(제1보)(第1報) (Mathematical Analysis for the Stress Distribution and Displacement by an Axial Load in an Elastic Half -Space by a Rigid Punch in the Form of a Flat-Ended Circular Cylinder Cemented to the Stress Free Surface(Part 1))

  • 이낙주
    • 대한조선학회지
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 1968
  • In this problem the ragid punch in the form of a flat-ended circular cylinder of unit radius is cemented to the stress free surface of an elastic half-space. An axial load P is then applied to the punch to force it into half-space to depth $\varepsilon$. It is assumed that the adhesive between the punch and can be reduced to the system of Abel type integral equations which are equation (13) and (14). It is also shown that the stress and displacement components on the portions of boundary where they are not prescribed can be expressed in terms of $\phi(t)$ and/or $\phi(t)$ which are introduced in equation (9) and (10). Those functions can be obtained from the solution of the system of integral equations (13) and (14).

  • PDF