• Title/Summary/Keyword: Abandoned tunnel

Search Result 55, Processing Time 0.022 seconds

Evaluation of the Stability for Underground Tourist Cavern in an Abandoned Coal Mine (폐탄광 갱도를 활용한 갱도전시장의 안정성 평가)

  • Han Kong-Chang;Jeon Yang-Soo
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.425-431
    • /
    • 2005
  • A series of geotechnical surveys and in-situ tests were carried out to evaluate the stability of underground mine cave in an abandoned coal mine. After the closure of the mine, the underground mine drifts have been utilized for a tourist route since 1999. The dimension of the main cave is 5m width, 3m height and 230m length. The surrounding rock mass of the cave is consist of black shale, coal and limestone. Also, the main cave is intersected by two fault zone. Detailed field investigations including Rock Mass Rating(RMR), Geological Strength Index(GSI) and Q classification were performed to evaluate the stability of the main cave and to examine the necessity of reinforcement. Based on the results of rock mass classification and numerical analysis, suitable support design was recommended for the main cave. RMR and Q values of the rock masses were classified in the range of fair to good. According to the support categories proposed by Grimstad & Barton(1993), these classes fall in the reinforcement category of the Type 3 to Type 1. A Type 3 reinforcement category signifies systematic bolting and no support is necessary for the Type 1 case. From the result of numerical analysis, it was inferred that additional support on the several unstable blocks is required to ensure stability of the cave.

Mine Haulage System Design for Reopening of Yangyang Iron Mine using 3D Modelling (3차원 모델링을 이용한 재개광 양양철광의 운반시스템 설계)

  • Son, Youngjin;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.412-428
    • /
    • 2012
  • To achieve mine development, a large amount of data concerned with the geological structure and the ore body had to be investigated and collected through geological survey, drilling and geophysical explorations. In most previous cases, however, the data were usually analyzed two dimensionally and those results showed some limits because of their 2D presentation. Those 2D maps such as geological plane sections or longitudinal sections cause lots of difficulties in understanding the complex geological structure or the feature of ore body in a spatial way. In this study, research area was set on the abandoned Yangyang iron mine in Korea and the Sugaeng ore body within the mine was selected as the research target to design a mine haulage system for reopening. A 3D mine model of this area was tried to be constructed using a 3D modelling software, GEMS. An accurate 3D model including the ore body, the geological structure, the old underground mine drifts and the new mine drifts was constructed under the purpose of reopening of the abandoned iron mine. Especially, mine design for trackless haulage system was conducted. New inclines and drifts were planned and modelled 3 dimensionally considering the utilization of old drifts and shaft. In addition to the 3D modelling, geostatistical technique was adopted to generate a spatial distribution of the ore grade and the rock physical properties. 3D model would be able to contribute in solving problems such as evaluating ore reserves, planning the mine development and additional explorations and changing the development plans, etc.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

A Study on the Development of Rapidly Hardening Grouting Method for the Effective Filling in the Underground Cavity (지하공동의 효율적 충전을 위한 급결 충전 그라우트공법개발에 관한 연구)

  • Kim, Soo-Lo;Kim, Tae-Heok;Shin, Dong-Chun;Kwon, Hyun-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.534-544
    • /
    • 2009
  • The collapse of the underground cavity can cause the abrupt local subsidence of the ground surface. It can be hazardous to the stability of road and building for human activity. Therefore it is necessary to develop reinforcement methods for the filling of the underground cavity. This study was executed to improve the material quality and systems to fill the calcium-aluminate mineral $(C_{12}A_7)$ environmentally, and minimize the loss of filling materials for the steep underground cavity. Filling material which was developed in this study is composed of rapid hardening material and additives. The developed material had rapid hardening and non-separation ability in the water cavity condition, so it made the effective underground dam in the cavity with prevention of material loss when it was poured in the water cavity. Results of heavy metal leaching test for environmental assessment showed that it was environmentally suiTable material for the filling in the mine cavity.

Research and Development Trends for Mine Subsidence Prevention Technology in Korea (한국의 광산 지반침하방지기술 연구개발 동향)

  • Kim, Soo Lo;Park, Joo Hyun
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.408-416
    • /
    • 2015
  • The collapse of the underground cavities and voids, which were made for developing mineral resources, can cause the subsidence of the ground surface in the residential areas. During the Japanese colonial era and the 1960's mining boom period, lots of mines had been developed indiscriminately in Korea. Due to complicated geological conditions and mining methods, many of dangerous underground mine cavities with steep slopes had been generated at the shallow surface. Due to such conditions, it is difficult to directly apply valid foreign reclamation practice for the cavities in Korea environments. It is necessary to develop the efficient ground stabilization technologies for the Korea underground mine conditions to solve abandoned mine reclamation properly. Therefore, MIRECO and Korea government have been carrying out practical researches and technical developments together with other academic researchers and reclamation business partners, and various practical solutions such as surveying and exploration methods, proper cavity filling materials and reinforcement methods have been developed with application in the mine field. In this article, up to date technologies and R&D trends in the field of mine subsidence prevention technology are broadly reviewed to establish the future direction of a research and development.

A Study on Digitization and Figuration Analysis of the Underground Mine Cavity Using MIRECO EYE System (MIRECO EYE 시스템을 활용한 광산 지하공동의 수치화 및 형상화 분석 연구)

  • Kim, Soo Lo;Park, Jay Hyun;Yang, In Jae
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.387-399
    • /
    • 2018
  • Mine reclamation project is closely related to human's past mining activities and the current human's living environment. It is a reason for the national management. In order to efficiently carry out mine reclamation projects, a precise investigation and analysis of the underground space of the abandoned mine is required. Korea MINE RECLAMATION Corp. is developing a practical technology that is effective in investigating and actually measuring underground cavities. MIRECO EYE system is an exploration equipment for 3D digitization and figuration of underground cavities. As combining a laser, sonar and image acquisition technology, it enables access to information about inaccessible underground cavities and effective management of subsidence risk of mined area. and currently it is also utilized for various purposes in related areas such as investigating urban sinkholes. This article is precise numerical and geometric information analysis obtained through MIRECO EYE system.

Development of RIMS and Present Conditions of its DB (암반정보관리시스템(RIMS)의 개발 및 DB 현황)

  • 이성민;김영구;박부성
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.131-140
    • /
    • 1999
  • Although there have been lots of geological or geotechnical surveys for construction sites, most of data obtained from these surveys have not been reused properly for the future construction work due to the absence of systematic management of data management system. This research, therefore, has focused on the development of DB system, Rockmass Information Management System(RIMS), to save, manage and reuse these abandoned data, specially test data of rock and rockmass with site conditions. RIMS has not only the basic functions of inputting, modifying, and dynamic searching of data but also several data control modules which can manage, input and correct, analyse and report data. Furthermore it saves data such as strata status, laboratory test results, in-site test results, and so on using 3-dimensional data stacking up structure. It is using x, y coordinates to represent horizontal positions and depth to represent vertical position of data. With the development of RIMS, this research has analyzed and classified present conditions of data in RIMS according to region, rock type, etc.

  • PDF

Stability Assessment of Building Foundation over Abandoned Mines (채굴 지역에서의 건축물 기초 지반 안정성 평가 연구)

  • 권광수;박연준
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.174-181
    • /
    • 2001
  • The cavities created by underground mining, if remained unfilled, can cause ground settlement and surface subsidence as a result of relaxation and breakdown of the carven roof. Construction of structures above the underground mine cavity will have serious problems concerning both structural stability and safely even if the cavity is back-filled. This study was conducted to confirm the location and condition of the cavern as well as the state of the back-fill in A mine area using core logging and borehole camera. The bearing capacity and other mechanical properties of the ground were also measured by the standard penetration test(SPT). Obtained data were used to assess the stability of the ground and the structures to be built by numerical analysis using FLAC. The site investigation results showed that the mine cavities were filled with materials such as boulder and silty sand(SM by unified classification). Result of the numerical analyses indicated that constructing building structures on the over-lying ground above the filled cavities is secure against the potential problems such as surface subsidence and ground settlement.

  • PDF

Underground Space Development and Strategy in Korea (국내 지하공간 개발 및 대책)

  • Shin, Hee-Soon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.327-336
    • /
    • 2013
  • Approximately 70% of the Korean peninsula is composed of mountains, around 99,274 $km^2$. Even worse, population rate of Korea is the No.3 in the world now. Accordingly, it is necessary to develop the potential underground space actively with the concept of another territory to be utilized. The development of underground space should be considered not a choice but an indispensable issue. Since 1970s, many large-scale underground structures have been constructed like as crude-oil storage bins, liquefied petroleum gas storage caverns, and underground pumped storage powerplants. Also, In urban area, the underground facilities such as subway networks, underground shopping mall, underground pedestrian network, electric power tunnels, and car parking lots have been used extensively. The scale of Yeosu oil and gas underground storage facility and Seoul subway systems are one of the massive scale in the world. Recently, the trend of the development of underground space becomes more diverse and larger scale. The current status of Korean underground space developments and strategy are described in this paper.

A Study on the Effect of Underground Openings on the Stability of Surface Structures Using Scaled Model Tests (지하 채굴적이 지표 구조물의 안정성에 미치는 영향에 관한 모형실험 연구)

  • 김종우;전석원;서영호
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.43-53
    • /
    • 2004
  • In this study, scaled-model tests were performed to investigate the effect of underground openings on the stability of surface structure around the abandoned coal mine areas. Four types of test models which had respectively different depths of openings and different ground reinforcement conditions were introduced, where the modelling materials were the mixture of sand, plaster and water. The model with deep openings were turned out more stable to the structure than the model with shallow ones, because the crack-initiating pressure of the former was 2.5 times as much as that of the latter. The models with ground reinforcement were also fumed out more stable than the model without reinforcement, because the crack-initiating pressure of the former was 2.4 times as much as that of the latter. Subsidence profiles were analysed to find the characteristics of slope and curvature, and the model with large reinforcement were turned out the most stable.