• Title/Summary/Keyword: Ab-initio

Search Result 422, Processing Time 0.022 seconds

The ab Initio Calculation of the Spectroscopic Properties of FO and FO$^+$

  • Sung, Eun-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.377-381
    • /
    • 1989
  • The spectroscopic properties of $FO^+$ and FO were investigated by ab initio calculation. Several different levels of theory, $MP3/6-31G^*,\;MP4/6-311G^*\;and\;CISD/6-31G^*$, were tried and compared with experimental results of FO. In the overall performance the CISD showed the best agreement. Based on these results the spectroscopic constants of $FO^+$ are predicted.

Ab initio Study on Structures, Energies and Vibrations of Methylammonium-(water)$_n$ (n=1-3) Complexes

  • Kim, Gwang Yeon;Jo, Yung In;Bu, Du Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.597-604
    • /
    • 2001
  • The reaction of [(2-N,N-dimethylaminomethyl) pheny] methylvinychlorosiane with t-BuLi in hexane solvent gave dimers, five isomeric 1,3-disilacyslobutanes which were weparated and charaterized. In trapping experiments with various trapping agents, no corresponding silene-trapping aduct was observed. We suggest that more important species for the formation of five isomeric dimers might be the zwitterionic species generated by virtue of intramolecular donor atom rather than the silene.

Ab Initio Studies on Proton Affinities of Substituted Oxazoles (치환 옥사졸의 양성자 친화도에 대한 ab initio 연구)

  • Lee, Hyun-Mee;Lee, Song-Eun;Chang, Mahn-Sik;Park, Byung-Kak;Lee, Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.493-500
    • /
    • 1995
  • The geometry optimization of oxazole, relevant to the binding of lexitropsin that contains this ring to the base pair (G-C sequence) of minor groove of DNA, is performed with the aid of MM+ and ab initio (Hartree-Fock) calculations. The proton affinity and electronic structure are calculated at the 6-31G and $6-31G^{\ast}$ level for the optimized geometry. The proton affinities are also studied for various substituted oxazoles with the electron-donating and -withdrawing groups to estimate the substituent effect on the proton affinities of oxazoles. It is shown that the electron-donating substituents increase the proton affinity of oxazole, while the electron-withdrawing substituents decrease it. This result can be explained with atomic charge and electron density at oxygen of substituted oxazoles.

  • PDF

Ab initio and DFT Study for the Internal Rotations of Cyclopropyldifluoroborane Molecule (Cyclopropyldifluoroborane 분자의 내부회전에 대한 이론적인 연구)

  • Kim, Gyeong-Lee;Lee, Jeong-Gyeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.291-297
    • /
    • 2006
  • The equilibrium structures, relative energies and NBO analyses for the possible conformations and transition states which can exist on the internal rotation of CPDFB and CPCFB molecules have been investigated using DFT and ab initio methods with various basis sets. The interaction between bonding orbital ((C1-C3, C2-C3)) and antibonding orbital (n*(B9) and *(B9-Cl11)) was the main characteristic hyperconjugation in both molecules. In addition, the stabilization energy of CPDFB was 6.63kcal/mol and that of CPCFB was 6.97(E-form)/6.79(Z-form) kcal/mol for each conformation. The rotational barriers by internal rotation of BF2- and BFCl- functional groups were evaluated to be 5.3~6.7kcal/mol and 5.7~6.5kcal/mol respectively, which showed good agreement with the experimental values reported by previous dynamic NMR study. Finally, Z-form was more stable than E-form by 0.2 kcal/mol in CPCFB molecule and therefore Z-form was confirmed as global minimum.

Ab Initio Studies on Hydrogen-Bonded Trimers Formed between Hydrogen Cyanide and Hydrogen Fluorides (시안화수소와 플루오르화수소와의 수소결합 삼합체들에 관한 Ab Initio 연구)

  • Rhee, Soon Ki;Lee, Hyun Jin
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • Ab initio SCF calculations have been carried out for the five conceivable trimers formed between one hydrogen cyanide and two hydrogen fluorides using a basis set of TZ+P quality. Several ground state properties of these trimeric complexes have been evaluated, and compared with those of isolated monomers and appropriate dimers. Computed equilibrium geometries, stabilization energies, and dipole moments are given in order to suppliment the available experimental data. At this level of approximation, intramolecular bond distances are consistently shorter than experimental ones. However, intermolecular distances upon complex formation, and dipole moments are overestimated compared with experimental ones. HCN$(HF)_2$ trimer appears to be the most favourable among the five kinds of trimer complex, and also more stable than $(HCN)_2HF$. The typical features of the non-additivity of intermolecular interaction are relatively strong in the HCN$(HF)_2$ trimer.

  • PDF

Ab initio Study of the Complexes of Trimethyl Ether of Monodeoxycalix[4]arene with Potassium Ion: Cation-π Interactions

  • Lee, Hyung-Dae;Kim, Kwang-Ho;Lee, Ho-Jun;Lee, Sik;Nanbu, Shinkoh;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.508-514
    • /
    • 2006
  • In this study, we have performed ab initio computer simulations to investigate the conformational and complexation characteristics of the trimethyl ether of p-tert-butylmonodeoxycalix[4]arene (6) with a potassium ion. The structures of different conformers of 6 and their potassium complexes were optimized by using ab initio RHF/6-31G and B3LYP/6-31G(d,p) methods. The relative stability of the various conformers of the uncomplexed 6 is in following order: cone (most stable) > 1-partial-cone ~ 2i-partial-cone > 2-partial-cone ~ 1,3-alternate > 3i-partial-cone. However, the relative stability of the conformational complexes of 6 with $K^+$ is in the following order: 2-partial cone ~ 1,3-alternate > cone > 3-partial cone > 1-partial cone (least stable). The highest binding strengths of 2-partial-cone and 1,3-alternate complexes originate from two strong cation-$\pi$ interactions and two strong cation-oxygen interactions in the complex of 6+$K^+$. Due to the cation-$\pi$ interactions, the calculated C-C bond distances in the arenes of the $K^+$-complexes are about 0.0048 $\AA$ longer than the values of their isolated hosts.

Ab Initio Studies on Hydrogen-Bonded Dimers of Fluoromethanes with Ammonia and Water (플루오르화메탄들과 암모니아 및 물과의 수소결합 이량체들에 관한 Ab Initio 연구)

  • Soon-Ki Lee;Seung-Hoon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.408-415
    • /
    • 1993
  • Systematic ab initio SCF calculations have been performed on the hydrogen-bonded dimers of fluoromethanes involving $CH_4,\;CH_3F,\;CH_2F_2\;and\;CHF_3$ with ammonia and water applying basis sets of 9s5p/5s and 9s5p1d/5p1d. Various ground state properties of these stable dimeric complexes have been evaluated. We compared these with corresponding properties of isolated monomers. We report equilibrium geometries, stabilization energies, dipole moments and force constants of intermolecular bonds. The effects arising as a consequence of the non-additive behavior of hydrogen bonding in chain-like oligomers are discussed. Systematic, methodical errors due to the use of the SCF approximation and the basis set dependence of the computed results are pointed out.

  • PDF

Quantum Mechanical Investigation on the Intermediates of Alkene-Ozone Reaction (알켄-오존 반응의 중간 생성물에 대한 ab initio 양자역학적 고찰)

  • Kang, Chang Deok;Kim, Seung Jun
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.161-171
    • /
    • 1998
  • The geometrical parameters, vibrational frequencies, and IR intensities for primary ozonide (POZ), secondary ozonide (SOZ) and carbonyl oxide as the intermediates of alkene-ozone reaction have been predicted using high level ab initio quantum mechanical method with various basis sets. In general, the polarization function decreases bond lengths and bond angles, while the electron correlation effect increases bond lengths slightly. The electronic structure of carbonyl oxide has been predicted to be zwitterionic structure and energy difference between zwitterionic and diradical structure is evaluated to be 22.4 kcal/mol at TZ2P CISD level of theory. The experimental vibrational frequencies and IR intensities of POZ and SOZ will be compared and discussed with our high level theoretical predictions.

  • PDF

Ab Initio and Experimental Studies on Dibenzothiazyl-Disulfide

  • Jian, Fang-Fang;Zhang, Ke-Jie;Zhao, Pu-Su;Zheng, Jian
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1048-1052
    • /
    • 2006
  • Ab initio calculations of the structure, atomic charges and natural bond orbital (NBO) have been performed at HF/6-311G** and B3LYP/6-311G** levels for the title compound of dibenzothiazyl-disulfide. The calculated results show that the two nitrogen atoms have the biggest negative charges and they are the potential sites to react with the metallic ions, which make the title compound become a di-dentate ligand. Vibrational frequencies of the title compound have been obtained and compared with the experimental value and the comparison indicates that B3LYP/6-311G** level is better than HF/6-311G** level to predict the vibrational frequencies for the system studied here. For the title compound, electronic absorption spectra calculated by time?ependent density functional theory (TD-DFT) are more accurate than Hartree-Focksingle-excitation CI (CI-Singles) method. NBO analyses show that the electronic transitions are mainly derived from the contribution of bands $\pi\rightarrow\pi^{*}$. Thermodynamic calculated results show that the formation of the title compound from 2-mercaptobenzothiazole is a spontaneous process at room temperature with the change of free Gibbs being negative value.