• 제목/요약/키워드: AZ91D magnesium alloy

검색결과 40건 처리시간 0.022초

The Composition of the Rare Earth Based Conversion Coating Formed on AZ91D Magnesium Alloy

  • Chang, Menglei;Wu, Jianfeng;Chen, Dongchu;Ye, Shulin
    • Corrosion Science and Technology
    • /
    • 제17권1호
    • /
    • pp.1-5
    • /
    • 2018
  • As structural materials, magnesium (Mg) alloys have been widely used in the fields of aviation, automobiles, optical instruments, and electronic products. There are few studies on the effect of coating conditions on the compositional variation during the formation process of the conversion coatings. Rare-earth based conversion coating on AZ91 magnesium alloy was prepared in ceric sulfate and hydrogen peroxide contained solution. The element composition and valence as well as their distribution in the coating were analyzed with energy dispersive X-ray spectroscopy (EDS), Electron probe micro-analyzer (EPMA), X-ray photoelectron spectroscopy (XPS). The effect of treating process on the element composition were also studied. It was found that the conversion coating surface consists of Mg, Al, O, Ce, and the weight content of Ce in the coating was affected by the treating solution concentration and immersion time; the Ce element was distributed in the coating non-uniformly and existed in the form of $Ce^{+3}$ and $Ce^{+4}$, while the O element existed in the form of $OH^-$, $O^{2-}$, $H_2O$. Based on microscopic analysis results, the electrochemical deposition mechanism on the micro-anode and micro-cathode in the process of the coating growth was suggested.

FRICTION STIR WELDING OF MAGNESIUM ALLOYS

  • Kazuhiro Nakata;Kim, Young-Gon;Masao Ushio
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.511-515
    • /
    • 2002
  • Extruded and cast plates of AZ type magnesium alloys were successfully joined by friction stir welding (FSW). Effect of FSW conditions on the formation of the defect was revealed in relation to tool rotation speed and specimen travel speed. Magnesium alloy with higher aluminum content became difficult to be joined and the optimum condition without defect was restricted into narrow condition range. The structure of the stirred zone was a fine-grained recrystallized structure even in the case of cast AZ91D. FSW joint had better mechanical properties than those of GTA welded joint. Especially the toughness of the stirred zone increased more than that of the base metal.

  • PDF

AZ91D 상용 마그네슘합금위에 316L과 420의 스테인레스 스틸의 플라즈마 코팅층의 마모와 기계적 특성 (Tribological and mechanical properties of plasssma sprayed 316L and 420 stainless steel layers on the AZ91D commercial magesium alloy)

  • 이수완;박종문;이명호;짐진수
    • 한국표면공학회지
    • /
    • 제30권6호
    • /
    • pp.365-373
    • /
    • 1997
  • 316L and 420 Stainless steels were deposited onto AZ9ID commercial magnesium alloy by plasma spray process with various gas flow rate of, TEX>$H_2$ secondary gas. And hardness as well as were track volume, coefficient of friction also had been measured. wear and hardness were measured by using reciprocal configuration tribometer and microghardness tester, respectively. Also, the microstructure of the coatings surface the cross sectional area of coating surface and cross sectional area of coaing/Substrate interface had been analyzed with Scanning Electron Microscope(SEM) and Optical microscope(OM). Finally, optimal process parameters for the improvement of coating efficiency such as mechanical property and wear behavior were examined.

  • PDF

Physical Properties of Oxide Films Formed by Plasma Anodization on Mg Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Aoki, Kazuki;Nanao, Hidetaka;Kure-Chu, Song-Zhu
    • 한국재료학회지
    • /
    • 제29권11호
    • /
    • pp.657-663
    • /
    • 2019
  • In this work, we study physical and mechanical properties of oxide films formed on AZ91D magnesium alloy by plasma anodization at different temperatures. It is found that the higher the electrolyte temperature, the lower is the breakdown voltage of oxide layer. This is probably because films formed at higher temperatures are thinner and denser. Moreover, electrolyte temperature plays an important role in the physical properties of the films. As the electrolyte temperature increases from 20 to $50^{\circ}C$, the hardness of the oxide layer increases. Friction test against steel balls indicates that wear scars become narrower for films formed at higher temperatures because the films are harder, as indicated by the Vickers hardness. The thinner and denser nature of the oxide film formed at $50^{\circ}C$ is also advantageous for heat transfer when film is used as a heat sink. Laser flash test results show very fast heat transfer for AZ91D with plasma anodized oxide layer formed at higher temperatures.

AZ91D 합금의 기계적 성질 및 금형충전성에 미치는 결정립 미세화 원소의 영향 (Effects of Grain Refining Elements on the Mechanical Properties and Mold Filling Ability of AZ91D Alloy)

  • 김정민;박준식
    • 한국주조공학회지
    • /
    • 제31권2호
    • /
    • pp.79-82
    • /
    • 2011
  • Various grain refining alloying elements such as Sr, TiB, and Ca were added to AZ91D and their effects on the mechanical properties and mold filling ability were investigated. The average grain sizes of those alloys were significantly reduced by the small amounts of the alloying elements. Ca addition was the most remarkably effective in reducing the grain size, however it was found to deteriorate the mold filling ability and tensile properties. TiB addition was observed to be the most efficient for both grain refinement and mold filling.

마그네슘합금에서의 표면처리 특성 연구 (The characteristic of surface treatment about magnesium alloy)

  • 유재인;김기홍;최순돈;장호경
    • 한국레이저가공학회지
    • /
    • 제13권4호
    • /
    • pp.21-24
    • /
    • 2010
  • Plasma electrolyte oxidation (PEO) surface treatment of magnesium alloy, an optical analysis method through reflection spectra were measured. As a result, the sample is formed on the membrane form of MgO or $Mg(OH)_2$ is in the form of oxide. The wavelength energy of surface treatment of magnesium alloy sample observed 0.23eV red shift. The measured reflectance spectra observed with the three different signals. This is due to $Mg(OH)_2$ oxide layer formed on porous hole.

  • PDF

IT 부품용 마그네슘 합금의 고속 탭핑가공에 관한 연구 (A Study on the High Speed Tapping of Magnesium Alloy for IT Parts)

  • 이상민;박휘근;이원석;김택수;채승수;이충석;백영종;조현택;이영식;이종찬
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.29-34
    • /
    • 2012
  • This paper reports some experimental results in high speed rigid tapping of magnesium alloy(AZ91D). M3 spiral tap and high speed spindle tapping center of gantry type were used in experiments and thrust forces were measured. The experimental results indicate that the thrust forces are proportional to the spindle speed and depth of cut. The thrust forces increase as the depth of cut increases. M3 Tapping was achieved at the spindle speed of 10,000rpm, depth of cut of 1.5D and total stroke of 32mm.

PEO 처리조건에 따른 마그네슘 합금 AZ91의 표면특성변화에 관한 연구 (Effects of PEO Conditions on Surface Properties of AZ91 Mg Alloy)

  • 박경진;정명원;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제17권3호
    • /
    • pp.71-77
    • /
    • 2010
  • 마그네슘 합금은 낮은 밀도를 가지는 장점을 이용하여 자동차, 항공, 이동전화, 컴퓨터 등에 많이 쓰이고 있으나 기계적 강도가 낮고 내부식성이 좋지 않아 사용이 제한되었다. 마그네슘 합금 표면에 내식성 산화층을 형성하기 위하여 환경 친화적인 전해 플라즈마 산화법(PEO)을 연구에 사용하였다, PEO법은 수용약 중에서 플라즈마를 발생시켜 전기화학적 산화막을 형성시키는 방법이다. 인가전압과 전휴가 산화피마에 미치는 영향에 대하여 고찰하였다, 또한, 직류와 펄스전류를 사용하여 결과를 분석하였다. 펄스전류를 사용하고 정전류법을 사용한 경우에 치밀한 산화막을 얻을 수 있었다, 부식특성 분석을 위하여 양극산화분극방법을 이용하였다. 표면의 강도는 처리전의 AZ9ID에 비하여 5배 이상 증가하였다.

이온 플레이팅법에 의한 내식 박막의 제작과 부식방식 메카니즘 (Preparation of corrosion-resistive thin films by ion plating method and their corrosion protection mechanism)

  • 이경희;배일용;김기준;문경만;이명훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.285-286
    • /
    • 2006
  • Magnesium is the lightest of all the structural metals having density of 1.74. It is approximately 2/3 lighter than aluminium, l/4 lighter than titanium alloy and 1/5 lighter than iron. Among the light-weight alloys, magnesium and its alloys show a good possibility for high performance aerospace and automotive applications, however the widespread use of magnesium alloys has been limited mainly by its poor oxidation and corrosion resistance. In this work, corrosion-resistive thin films were prepared onto the magnesium alloy substrate(AZ91D) by environmental friendly coating technique, ion plating method. And their corrosion protection mechanism were analyzed.

  • PDF