Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.11.657

Physical Properties of Oxide Films Formed by Plasma Anodization on Mg Alloy  

Lee, Sung-Hyung (Gakko hojin Kitahara gakuen)
Yashiro, Hitoshi (Department of Chemistry and Biological Science, Iwate University)
Aoki, Kazuki (Department of Chemistry and Biological Science, Iwate University)
Nanao, Hidetaka (Department of Chemistry and Biological Science, Iwate University)
Kure-Chu, Song-Zhu (Materials Function and Design, Nagoya Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.11, 2019 , pp. 657-663 More about this Journal
Abstract
In this work, we study physical and mechanical properties of oxide films formed on AZ91D magnesium alloy by plasma anodization at different temperatures. It is found that the higher the electrolyte temperature, the lower is the breakdown voltage of oxide layer. This is probably because films formed at higher temperatures are thinner and denser. Moreover, electrolyte temperature plays an important role in the physical properties of the films. As the electrolyte temperature increases from 20 to $50^{\circ}C$, the hardness of the oxide layer increases. Friction test against steel balls indicates that wear scars become narrower for films formed at higher temperatures because the films are harder, as indicated by the Vickers hardness. The thinner and denser nature of the oxide film formed at $50^{\circ}C$ is also advantageous for heat transfer when film is used as a heat sink. Laser flash test results show very fast heat transfer for AZ91D with plasma anodized oxide layer formed at higher temperatures.
Keywords
AZ91D Mg alloy; plasma anodizing; coating; friction properties; thermal conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, J. Korean Inst. Surf. Eng., 50, 432 (2017).   DOI
2 S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, Korean J. Mater. Res., 28, 544 (2018).   DOI
3 S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, Korean J. Mater. Res., 29, 5 (2019).
4 E. K. Beauchamp, J. Am. Ceram. Soc., 54, 484 (1971).   DOI
5 S. Ono, K. Asami, T. Osaka and N. Masuko, J. Electrochem. Soc., 143, 62 (1996).   DOI
6 C.-W. Yang, Y.-H. Chang, T.-S. Lui and L.-H. Chen, Mater. Des., 40, 163 (2012).   DOI
7 G. Liu, G. Li, A. Cai and Z. Chen, Mater. Des., 32, 121 (2011).   DOI
8 J. Liang, L. Hu and J. Hao, Appl. Surf. Sci., 253, 4490 (2007).   DOI
9 Y. Zhang and C. Yan, Surf. Coat. Tech., 201, 2381 (2006).   DOI
10 D. Jun, J. Liang, L. Hu, J. Hao and Q. Xue, Trans. Nonferrous Met. Soc. China, 17, 244 (2007).   DOI
11 J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou and T. Xu, Appl. Surf. Sci., 252, 345 (2005).   DOI
12 Y. K. Lee, K. Lee and T. Jung, Electrochem. Commun., 10, 1716 (2008).   DOI
13 X. Zhang, Z. Zhao, F. Wu, Y. Wang and J. Wu, J. Mater. Sci., 42, 8523 (2007).   DOI
14 C. J. Humrickhouse-Helmreich, R. Corbin and S. M. McDeavitt, J. Nucl. Mater., 446, 100 (2014).   DOI
15 K. Kuniya, H. Arakawa, T. Kanai and A. Chiba, Trans. Jpn. Inst. Met., 28, 819 (1987).   DOI
16 S. Masaki, S. Jung and T. Okane, J. Alloys Compd., 475, 903 (2009).   DOI
17 G. Yuan, G. You, S. Bai and W. Guo, J. Alloys Compd., 766, 410 (2018).   DOI
18 J. A. Curran and T. W. W. T. Clyne, Surf. Coatings Technol., 199, 168 (2005).   DOI
19 J. A. Curran, H. Kalkanci, Y. Magurova and T. W. Clyne, Surf. Coatings Technol., 201, 8683 (2007).   DOI