• Title/Summary/Keyword: AZ91 alloy

Search Result 101, Processing Time 0.022 seconds

Effect of Heat Treatment on Microstructure and Tensile Properties of AZ91-CaO Alloy (AZ91-CaO 합금의 미세조직과 인장 특성에 미치는 열처리의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.4
    • /
    • pp.190-195
    • /
    • 2012
  • This study aims to investigate and compare the microstructures and room temperature tensile properties for AZ91 and ECO-AZ91 (AZ91+0.3%CaO) alloys in as-cast, T4 and T6 states, respectively. In as-cast state, the ECO-AZ91 alloy has finer microstructure than the AZ91 alloy. The AZ91 alloy exhibits greater ductility, while YS and UTS are inferior to those of the ECO-AZ91 alloy. After T4 treatment, most of ${\beta}$ compounds disappear in the AZ91 alloy, whereas ${\beta}$ phase is still observed in the ECO-AZ91 alloy due to its enhanced thermal stability, resulting in lower values of ductility and UTS. In T6 state, YS and UTS are better in the ECO-AZ91 alloy.

Effect of Combined Addition of Ca and Y on Aging Behavior of Extruded AZ91 Magnesium Alloy (Ca과 Y 복합 첨가가 AZ91 마그네슘 압출재의 시효 거동에 미치는 영향)

  • Kim, H.J.;Kim, Y.M.;Bae, J.H.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.160-166
    • /
    • 2022
  • The purpose of this study is to investigate the effects of combined addition of Ca and Y on the precipitation and age-hardening behavior of an extruded AZ91 alloy by conducting the aging treatment at 200 ℃ for hot-extruded AZ91 and AZ91-0.3Ca-0.2Y alloys. In the AZ91 alloy, many Mg17Al12 discontinuous precipitate (DP) bands formed during air cooling immediately after extrusion are present, whereas in the AZ91-0.3Ca-0.2Y alloy, a few DP bands and numerous Al2Y, Al8Mn4Y, and Al2Ca phase particles are distributed along the extrusion direction. The peak-aging time of the AZ91-0.3Ca-0.2Y alloy is 16 hours, twice that of the AZ91 alloy. Although both alloys have similar hardness before aging treatment, the hardness after peak-aging treatment (i.e., peak hardness) of the AZ91-0.3Ca-0.2Y alloy is higher than that of the AZ91 alloy, as 93.1 and 88.7 Hv, respectively. The microstructures of both peak-aged alloys comprise DPs and continuous precipitates (CPs). However, the peak-aged AZ91-0.3Ca-0.2Y alloy has a smaller amount of DPs and a larger amount of CPs than the peak-aged AZ91 alloy. Additionally, the inter-particle spacings of DPs and CPs in the former are significantly narrower than those in the latter. These results demonstrate that the addition of small amounts of Ca and Y to a commercial AZ91 alloy considerably affects the formation rate, size, and amount of CPs and DPs during aging and resultant age-hardening behavior.

Effect of CaO Addition on Age Hardening Behavior of AZ91 Alloy (AZ91 합금의 시효경화 거동에 미치는 CaO 첨가의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.193-198
    • /
    • 2011
  • Effect of CaO addition on age hardening response has been studied by using optical microscopy, scanning electron microscopy and differential thermal analysis in AZ91 and CaO-containing ECO-AZ91 alloys. After solution treatment, the ${\beta}$($Mg_{17}Al_{12}$) phase formed during solidification mostly disappeared in the microstructure in the AZ91 alloy, whereas numerous ${\beta}$ precipitates containing Ca were still observed in the ECO-AZ91 alloy due to its enhanced thermal stability. The ECO-AZ91 alloy showed the delayed peak aging time and higher peak hardness compared with those of the AZ91 alloy. The activation energies for ${\beta}$ precipitation calculated by means of Kissinger method increased from 71.4 to 85.6 kJ/mole by the addition of CaO, which implies that CaO plays a role in reducing ${\beta}$ precipitation rate in the AZ91 alloy.

Effects of Ca, Si on the Microstructure and Aging Characteristic of AZ91 Alloy (AZ91합금의 조직(組織)과 시효특성(時效特性)에 미치는 Ca 및 Si의 영향(影響))

  • Jhee, T.G.;Kim, Y.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.6
    • /
    • pp.260-268
    • /
    • 2002
  • The effects of calcium and silicon on microstructure and aging characteristics of AZ91 magnesium alloy during T5 treatment was investigated. The addition of 0.88% calcium or 0.25% silicon to AZ91 alloy made dendrite cell smaller. Especially, silicon is more effectively acted as refinement of the dendrite cell than calcium. It is due to that $Mg_2Si$ precipitated at the dendrite cell boundary or in the matrix during T5 treatment of Si added AZ91 alloy retarded the growth of the secondary phase. In the mean while, without inducing the precipitates containing calcium, calcium was segregated mainly around secondary phase such as $Mg_{17}Al_{12}$ and partially dissolved in ternary eutectic (Mg-Al-Ca) structure. In the AZ91 alloy containing both silicon and calcium, more finely distributed $Mg_2Si$ in matrix homogeneously and much finer microstructure were obtained than those containing silicon or calcium. Hence, An AZ91 containing both silicon and calcium was more effective to retarding the growth of the secondary phase than the other AZ91 alloy such as AZ91 alloy containing silicon or AZ91 alloy containing calcium.

Age-hardening Behavior and Mechanical Properties of Cast AZ91-0.3Ca-0.2Y Alloy (AZ91-0.3Ca-0.2Y 마그네슘 합금 주조재의 시효경화 거동 및 기계적 특성)

  • H. J. Kim;J. H. Bae;Y. M. Kim;S. H. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • In this study, the age-hardening behavior and tensile properties of a cast AZ91-0.3Ca-0.2Y (SEN9) alloy are investigated and compared with those of a commercial AZ91 alloy. Even after homogenization heat treatment, the SEN9 alloy contains numerous undissolved secondary phases, Al8Mn4Y, Al2Y, and Al2Ca, which results in a higher hardness value than the homogenized AZ91 alloy. Under aging condition at 200 ℃, both the AZ91 and SEN9 alloys exhibit the same peak-aging time of 8 h, but the peak hardness of the latter (86.8 Hv) is higher than that of the former (83.9 Hv). The precipitation behavior of Mg17Al12 phase during aging significantly differs in the two alloys. In the AZ91 alloy, the area fraction of Mg17Al12 discontinuous precipitates (DPs) increases up to ~50% as the aging time increases. In contrast, in the SEN9 alloy, the formation and growth of DPs during aging are substantially suppressed by the Ca- or Y-containing particles, which leads to the formation of only a small amount of DPs with an area fraction of ~4% after peak aging. Moreover, the size and interparticle spacing of Mg17Al12 precipitates of the peak-aged SEN9 alloy are smaller than those of the peak-aged AZ91 alloy. The homogenized AZ91 alloy exhibits a higher tensile strength than the homogenized SEN9 alloy due to the finer grains of the former. However, the peak-aged SEN9 alloy has a higher tensile elongation than the peak-aged AZ91 alloy due to the smaller amount of brittle DPs in the former.

Effect of pre-treatment of AZ91 Mg alloy in HF solution on PEO film formation behavior (AZ91 마그네슘 합금의 PEO 피막 형성거동에 미치는 HF전처리의 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.4
    • /
    • pp.184-193
    • /
    • 2021
  • This study demonstrates formation behavior and morphological changes of PEO (Plasma Electrolytic Oxidation) films on AZ91 Mg alloy as a function of pre-treatment time in 1 M HF solution at 25 ± 1 ℃. The electrochemical behavior and morphological changes of AZ91 Mg alloy in the pre-treatment solution were also investigated with pre-treatment time. The PEO films were formed on the pre-treated AZ91 Mg alloy specimen by the application of anodic current 100 mA/cm2 of 300 Hz AC in 0.1 M NaOH + 0.4 M Na2SiO3 solution. Vigorous generation of hydrogen bubbles were observed upon immersion in the pre-treatment solution and its generation rate decreased with immersion time. It was also found that 𝛽-Mg17Al12 in AZ91 Mg alloy was dissolved and a protective thin film of MgF2 was formed on the AZ91 Mg alloy surface during the pre-treatment process in the 1 M HF solution. PEO film did not grow on the AZ91 Mg alloy specimen when the surface was not pre-treated and irregular PEO films with nodular defects were formed for the specimens pre-treated up to 1 min. Uniform PEO films were formed when the AZ91 Mg alloy specimen was pre-treated more than 3 min. The growth rate of PEO films on AZ91 Mg alloy increased significantly with increasing pre-treatment time.

Effect of Solution-treated on Electrochemical Properties of AZ91 Magnesium Alloy Anode

  • Zhiquan, Huang;Yanjie, Pei;Renyao, Huang;Xiangyu, Gao;Jinchao, Zou;Lianyun, Jiang
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.486-496
    • /
    • 2022
  • The effect of solution-treated on the self-corrosion performance and discharge performance of AZ91 magnesium alloy as anode material was analyzed by microscopic characterization, immersion tests, electrochemical measurements, and discharge performance tests. The study shows that the β-phase in the AZ91 magnesium alloy gradually dissolved in the matrix with the increase of the solution temperature, and the electrochemical activity of the magnesium alloy anode was significantly improved. Through the comparison of three different solution-treated processes, it is found that the AZ91 magnesium alloy has the most vigorous activity and better discharge performance after solution-treated of 415℃+12 h. In addition, the proportion and distribution of β-phase AZ91 magnesium alloy have a direct impact on its discharge performance as an anode material.

Effect of pre-treatment in 0.5 M oxalic acid containing various NH4F concentrations on PEO Film Formation of AZ91 Mg Alloy (NH4F가 첨가된 0.5 M 옥살산 전처리가 AZ91 마그네슘 합금의 PEO 피막 형성에 미치는 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • This study investigated the effect of pre-treatment on the PEO film formation of AZ91 Mg alloy. The pre-treatment was conducted for 10 min at room temperature in 0.5 M oxalic acid (C2H2O4) solution containing various ammonium fluoride (NH4F) concentrations. The pre-treated AZ91 Mg specimens were anodized at 100 mA/cm2 of 300 Hz AC for 2 min in 0.1 M NaOH + 0.4 M Na2SiO3 solution. When AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with NH4F concentration less than 0.3 M, continuous dissolution of the AZ91 Mg alloy occurred together with the formation of black smuts and arc initiation time for PEO film formation was very late. It was noticed that corrosion rate of the AZ91 Mg alloy became faster if small amount of NH4F concentration, 0.1 M, is added. The fast corrosion is attributable to fast formation of porous fluoride together with porous oxides in the reaction products. On the other hand, when AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with sufficient NH4F more than 0.3 M, a thin and dense protective film was formed on the AZ91 Mg alloy surface which resulted in faster initiation of arcs and formation of PEO film.

Effect of Zincate Treatment of As-Cast AZ91 Mg Alloy on Electrodeposition of Copper in a Copper Pyrophosphate Bath

  • Nguyen, Van Phuong;Park, Min-Sik;Yim, Chang Dong;You, Bong Sun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.401-407
    • /
    • 2016
  • In this work, effect of zincate treatment of AZ91 Mg alloy on the following electrodeposition of copper was examined in a non-cyanide bath containing pyrophosphate ions in view of surface morphology and adhesion of the electrodeposited copper layer. Without zincate treatment, the electrodeposited copper layer showed very porous structure and poor adhesion. On the other hand, the copper layer electrodeposited on the zincate-treated surface showed dense structure and good adhesion. The dissolution rate of AZ91 Mg alloy after the zincate treatment appeared to decrease about 40 times in the copper pyrophosphate bath, as compared to that of the surface without zincate treatment. The porous morphology and poor adhesion of a copper layer on the AZ91 Mg alloy surface without zincate treatment were attributed to small number of nucleation sites of copper because of rapid dissolution of the magnesium substrate in the pyrophosphate bath. Based on the experimental results, it is concluded that the zincate treatment to form a conducting and protecting layer on the AZ91 Mg alloy surface is essential for successful electrodeposition of a copper layer on AZ91 Mg alloy with good adhesion and dense structure in the copper pyrophosphate bath.

Mutual Solubility of Mn and Fe in AZ91 Alloy Melts and Its Application to Composition Control of AZ91D Recycled Ingots (AZ91 합금 용탕내 Mn과 Fe의 상호용해도 측정 및 AZ91D 재생지금의 성분조정에의 활용)

  • Kwon, Soon-Il;Byun, Ji-Young;Kim, Seon-Jin;Shim, Jae-Dong
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.619-624
    • /
    • 2003
  • This paper describes a method to control Mn and Fe contents in recycled AZ91D ingots, based on the mutual solubility of Mn and Fe in AZ91 alloy melts. For this purpose, Fe solubility with the change of Mn content and temperature was investigated in the homogenized and re-precipitated liquid AZ91 alloy. The increase of the amount of Mn added to the melt resulted in the decrease of Fe content. The data obtained in this study was adopted to the pilot plant for recycling of the scrap. As a result, Mn and Fe contents measured in the recycled ingot were in good agreement with ASTM B93 standard.