• Title/Summary/Keyword: AZ91 Magnesium Alloy

Search Result 71, Processing Time 0.025 seconds

A Study on the GTAW of Magnesium Alloys (마그네슘 합금의 GTA 용접특성에 관한 연구)

  • Yun, Byeong-Hyeon;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.144-145
    • /
    • 2007
  • Magnesium alloys are the lightest in commercial alloys. Also, they have high damping capacity and the shielding effect of electromagnetic waves. Recently, magnesium alloys have received considerable attention from the transportation industry. Many manufacturers of cars try to increase the use of magnesium alloys in their product. In order to evaluate the weldability of magnesium alloy, gas-tungsten arc welding(GTAW) have been applied to the AZ31, AZ61 and AZ91 alloys and established the optimum welding conditions.

  • PDF

Comparison of Electrochemical Corrosion Properties of Permanent Mold Casting GZ21 Alloy and AZ91 Alloy (금형 주조한 GZ21 합금과 AZ91 합금의 부식특성 비교)

  • Kim, Dae Han;Kim, Byeong Ho;Park, Kyung Chul;Chang, In Ki
    • Journal of Korea Foundry Society
    • /
    • v.36 no.2
    • /
    • pp.60-66
    • /
    • 2016
  • In this study, comparison of corrosion properties of the Mg-1.5Ge-1Zn (GZ21) alloy and Mg-9Al-1Zn (AZ91) alloy were investigated. The studied alloys were fabricated by permanent mold casting method. And the potentiodynamic test, hydrogen evolution test, immersion test and A.C Impedance test were carried out in a 3.5% NaCl solution with pH7.2 at room temperature to measure the corrosion properties. The microstructure of GZ21 alloy was composed of ${\alpha}-Mg$ and $Mg_2Ge$ phases and AZ91 alloy was composed of ${\alpha}-Mg$ and $Mg_{17}Al_{12}$ phases. From the test results, the corrosion property was improved by adding Ge. It seemed that the corrosion mechanism was changed from galvanic corrosion (AZ91) to filiform corrosion (GZ21).

THE JOINT CHARACTERISTICS OF FRICTION STIR WELDED AZ91D MAGNESIUM ALLOYS

  • Kim, Jong-Woong;Lee, Won-Bae;Yeon, Yun-Mo;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.516-521
    • /
    • 2002
  • A study was carried out to grow an understanding of the microstructural development of friction stir welds on an AZ91D magnesium alloy, and to evaluate the mechanical properties of the welds. AZ91D plates with the thickness of 4mm were used, and the microstructural development of the weld zone was investigated using optical and scanning electron microscopes. Square butt welding joint with good quality was obtained at the conditions of under 187mm/min of travel speed with 1100 to 1250 rpm of tool rotation speed. The microstructure within the weld region consisted of fine equiaxed grains with no evidence of the original dendritic structure. The hardness tests showed slightly increased harness in the weld region, and the minimum hardness measured is in that of the parent material. Tensile strength of the weld zone was remarkably improved due to very fine recrystallized structure. XRD pattern of weld zone revealed the removal of $\beta$ intermetallic compounds, $Mg_{17}$Al$_{12}$, which had been distributed in the base metal.l.

  • PDF

Effect of Microporosity on Tensile Properties of As-Cast AZ91D Magnesium Alloy

  • 이충도
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.283-283
    • /
    • 1999
  • In the present study, the effect of microporosity on the tensile properties of as-cast AZ91D magnesium alloy was investigated through experimental observation and numerical prediction. The test specimens were fabricated by die-casting and gravity-casting. For gravity-casting, the inoculation and use of various metallic moulds were applied to obtain a wide range of microporosity. The deficiency of the interdendritic feeding of the liquid phase acted as d dominant mechanism on the formation of the micropores in the Mg-Al-alloys, rather than the evolution of hydrogen gas. Although tensile strength and elongation has a nonlinear and very intensive dependence upon microporosity, the yield strength appeared to have a linear relationship with microporosity. However, it was possible to quantitatively estimate the linear contribution of microporosity on the individual tensile property far a range of microporosity, which was below about B %. The numerical prediction suggests that the effect of microporosity on fractured strength and elongation decreased as the strain hardening exponent increased. Furthermore. the shape and distribution of micropores may play a more dominant role than local plastic deformation on the tensile behavior of AZ9lD alloy.

Effect of Solution Treatment on Corrosion Behavior of AZ91-2%Ca Magnesium Casting Alloy (주조용 AZ91-2%Ca 마그네슘 합금의 부식 거동에 미치는 용체화처리의 영향)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.190-199
    • /
    • 2015
  • The study is intended to investigate the effect of solution treatment on microstructure and corrosion behavior of AZ91(Mg-9%Al-1%Zn-0.3%Mn)-2%Ca casting alloy. In as-cast state, the AZ91-2%Ca alloy consisted of intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_8Mn_5$ and $Al_2Ca$ phases in ${\alpha}-(Mg)$ matrix. After the solution treatment, Al within the ${\alpha}-(Mg)$ matrix was distributed more homogeneously, along with the slight decrease in the total amount of intermetallic compounds. The corrosion resistance of the AZ91-2%Ca alloy was improved after the solution treatment. The microstructural examinations for the solution-treated samples revealed that the better corrosion resistance may well be related to the incorporation of more oxides and hydroxides such as $Al_2O_3$, $Al(OH)_3$, CaO and $Ca(OH)_2$ into the surface corrosion product without dissolution of the intermetallic phases along the grain boundaries.

Corrosion Behavior of As-Cast and Solution-Treated AZ91-4%RE Magnesium Alloy (주조 상태 및 용체화처리한 AZ91-4%RE 마그네슘 합금의 부식 거동)

  • Han, Jin-Gu;Hyun, Soong-Keun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.5
    • /
    • pp.220-230
    • /
    • 2018
  • The objective of this study is to investigate the effect of solution treatment on the microstructure and corrosion behavior of cast AZ91-4%RE magnesium alloy. In the as-cast state, microstructure of the AZ91-4%RE alloy was characterized by intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_{11}RE_3$ and $Al_2RE$ phase particles distributed in ${\alpha}-(Mg)$ matrix. After solution treatment, the ${\beta}$ particles with low melting point dissolved into the matrix, but Al-RE phases still remained due to their high thermal stabilities. It was found from the immersion and potentiodynamic polarization tests that corrosion rate of the AZ91-4%RE alloy increased after the solution treatment. On the contrary, EIS tests and EDS compositional analyses on the surface corrosion products indicated that the stability of the corrosion product was improved after the solution treatment. Examinations on the corroded microstructures for the ascast and solution-treated samples revealed that dissolution of the ${\beta}$ particles which play a beneficial role in suppressing corrosion propagation, would be responsible for the deterioration of corrosion resistance after the solution treatment. This result implies that the microstructural features such as amount, size and distribution of secondary phases that determine corrosion mechanism, are more influential on the corrosion rate in comparison with the stability of surface corrosion product.

Evaluation of FSW Weldability of Wrought and Casting Mg Alloys (전신 및 주조된 Mg합금의 FSW 접합성 평가)

  • Noh Joong-Suk;Kim Heung-Ju;Chang Woong-Seong;Bang Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.53-57
    • /
    • 2004
  • Friction stir weldability of AZ31B-H24, AZ61A-F and AZ91C-F Mg alloys were studied using microstructural observation and mechanical tests. The microstructure of stir zone(SZ) was coarse in AZ31B-H24 alloy whereas it was very fine both in AZ61A-F and AZ91C-F alloys. The hardness of SZ was remarkably increased by very fine recrystallized grains both in AZ61A-F and AZ91C-F alloys. On the other hand, the hardness of SZ was decreased in AZ31B-H24 due to the coarse microstructure. In SZ, AZ91C-F alloy showed very high hardness values because of dispersion hardening of $Mg_{17}$Al$_{12}$($\beta$ phase) and Al solid solution hardening. Because of more $Mg_{ 17}Al_{12}($\beta$ phase)$ intermetallic compounds, Mg alloy with high Al content showed poor mechanical properties.s.

The Characteristics of Hot Hydrostatic Extrusion of AZ Magnesium Alloy (AZ계 마그네슘 합금의 열간 정수압 압출특성 연구)

  • Yoon, D.J.;You, B.S.;Lim, S.J.;Kim, E.Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.62-65
    • /
    • 2008
  • Extrusion characteristics of Mg alloys were studied experimentally. The Al-Zn-Mg alloys, AZ31, AZ6l, AZ80, and AZ91 were extruded with hot hydrostatic extrusion process. The hydrostatic process was efficient to reduce surface friction and extend steady state region in extrusion which made it more convenient to examine deformation behavior of the alloys avoiding the disturbance caused by temporary contact state between billet and die, and billet and container. High pressure was cooperative to expand forming limit of the alloys which were applied on the billet during the extrusion process. Extrusion limits were traced in temperature and extrusion speed domain with changing composition of the alloying elements. Effects of process parameters on extrusion load and microstructure evolution were investigated also.

  • PDF

New Surface Treatment Process in Magnesium Alloy for Wheelchair

  • Han, Byung-Kuk
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.112-115
    • /
    • 2013
  • One of the most important characteristics of Mg alloys is the high ratio of strength to weight. This is why there is a high demand for applications with these alloys in the transportation industries to reduce the fuel consumption and to save energy. In addition, magnesium (and its alloys) is of considerable interest as a structural material, especially in the aerospace and automotive industries thanks to its low density. However, its major drawback is its high sensitivity to corrosion. Therefore, its use requires the application of a surface treatment. This study used a die-casted AZ91D Mg alloyand all the samples were annealed (in $120^{\circ}C$). The surface microstructure and phase distribution in thin-walled AZ91D magnesium components cast on a hot-chamber die-casting machine were investigated by optical microscopy and scanning electron microscopy. The reflectance differences in the bulk state comparison with the annealing state are caused by hydrogenation presence of the Mg layer under an oxidation surface layer.

Effect of Power Mode of Plasma Anodization on the Properties of formed Oxide Films on AZ91D Magnesium Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.544-550
    • /
    • 2018
  • The passivation of AZ91D Mg alloys by plasma anodization requires deliberate choice of process parameters due to the presence of large amounts of structural defects. We study the dependence of pore formation, surface roughness and corrosion resistance on voltage by comparing the direct current (DC) mode and the pulse wave (pulse) mode in which anodization is performed. In the DC plasma anodization mode, the thickness of the electrolytic oxide film of the AZ91D alloy is uneven. In the pulse mode, the thickness is relatively uniform and the formed thin film has a three-layer structure. The pulse mode creates less roughness, uniform thickness and improved corrosion resistance. Thus, the change of power mode from DC to pulse at 150 V decreases the surface roughness (Ra) from $0.9{\mu}m$ to $0.1{\mu}m$ and increases the corrosion resistance in rating number (RN) from 5 to 9.5. Our study shows that an optimal oxide film can be obtained with a pulse voltage of 150 V, which produces an excellent coating on the AZ91D casting alloy.