• Title/Summary/Keyword: AZ31B-O

Search Result 12, Processing Time 0.028 seconds

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (I) - Comparison on Laser Weldability of AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (I) - AZ31B-H24 및 AZ31B-O의 레이저 용접성 비교 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.70-75
    • /
    • 2012
  • This study is related to the laser weldability of AZ31B magnesium alloy, an all-purpose wrought alloy with good strength and ductility. In general, AZ31B is classified into AZ31B-H24 and AZ31B-O depending on temper designation. Thus, in this study, the laser weldability of AZ31B-H24 and AZ31B-O was investigated and compared. CW Nd:YAG laser was used to produce bead and butt joints. And the effects of welding conditions on the weldability of these joints were examined in detail. As a result of this study, AZ31B-H24 was found to have thinner oxide film and smaller grain size compared with AZ31B-O. Due to such difference, in bead welding, AZ31B-H24 had more wide welding range for full penetration compared with AZ31B-O. Furthermore, it was also confirmed that AZ31B-H24 and AZ31B-O have different welding conditions to obtain stable keyhole in butt welding.

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (II) - Mechanical Properties of laser-welded AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (II) - AZ31B-H24 및 AZ31B-O 레이저 용접부의 기계적 특성 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Magnesium alloy sheet which is commercially available in the market presently is AZ31B, a Mg-Al-Zn three elements alloy. AZ31B is used by being classified into AZ31B-H24 and AZ31B-O depending on temper designation. In this study, AZ31B-H24 and AZ31B-O alloy sheets with 1.25mm thickness were butt-welded using CW Nd:YAG laser. And the effect of materials on mechanical properties was investigated by tensile and hardness tests. As a result of this study, regardless of materials, the butt-welded joint did not show a significant difference in tensile strength and hardness values. However, compared with the basemetal, the AZ31B-O showed more outstanding mechanical properties than AZ31B-H24, and that is because H24 material lost the effect of work hardening during welding.

Microstructure and Corrosion Properties of Plasma Electrolytic Oxide Coatings on AZ31 Magnesium Matrix Composite (플라즈마 전해 산화 처리한 AZ31 및 Al18B4O33w/AZ31 마그네슘 복합재료 피막의 미세구조 및 부식특성)

  • Cheon, Jinho;Park, Yongho;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.270-274
    • /
    • 2011
  • Plasma electrolytic oxidation (PEO) treatment was performed on squeeze cast AZ31 alloy and $Al_{18}B_4O_{33}w/AZ31$ composite. Scanning electron microscope (SEM) was employed to characterize the surface morphology and cross-section microstructure of the coating. The phase structures of the PEO coating were analyzed by X-ray diffraction (XRD). The corrosion resistance of the PEO coating was evaluated by electrochemical method. The results showed that the $Al_{18}B_4O_{33}$ whisker on the surface of the composite was decomposed and $MgAl_2O_4$ was formed in the PEO coating layer of $Al_{18}B_4O_{33}w/AZ31$ composite during PEO treatment. As a result, the electrochemical corrosion potential of the PEO coated $Al_{18}B_4O_{33}w/AZ31$ composite was increased compared with that of AZ31 alloy.

Effect of Stress Ratio and Anisotropy on Fatigue Crack Propagation Behavior of AZ31B Magnesium Alloy (AZ31B 마그네슘합금의 피로균열성장에 미치는 응력비 및 이방성의 영향)

  • Kim, K.S.;Kim, M.K.;Kim, H.K.;Kim, C.O.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • This study was to investigate the effects of stress ratio and anisotropy on Fatigue Crack Propagation(FCP) behavior of rolled magnesium alloy AZ31B. The experimental materials were a Mg-Al-Zn magnesium alloy. The FCP test was conducted on compact tension specimen by a servo-hydraulic fatigue testing machine in air at room temperature. Compact tension specimens were prepared from the extruded parallel and vertical rolling direction. The test condition was frequency of 10Hz and sinusoidal load stress ratios are 0.1 and 0.7. The FCP rates was automatically measured by a compliance method. In the case of the FCP of AZ31B, the FCP of both direction of LT and TL by anisotropy of specimens are almost same value. In lower stress ratio, the FCP of the LT, TL specimens are increased in lower ${\Delta}K$ region but higher ${\Delta}K$ regions are almost same value. Finally, the result of observed the surface crack, it expressed the quasi-cleavage fracture in lower ${\Delta}K$ region and straight mark on the aspect of the facet in high ${\Delta}K$ region.

Mechanical Properties and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy

  • Park, Jae Seon;Jung, Hwa Chul;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • The plasma electrolytic oxidation (PEO) process is a relatively new surface treatment technique that produces a chemically stable and environment-friendly electrolytic coating that can be applied to all types of magnesium alloys. In this study, the characteristics of oxide film were examined after coating the extruded AZ31 alloy through the PEO process. Hard ceramic coatings were obtained on the AZ31 alloy by changing the coating time from 10min to 60min. The morphologies of the surface and the cross-section of the PEO coatings were examined by scanning electron microscopy and optical microscopy, and the thickness of the coating was measured. The X-ray diffraction pattern of the coating shows that the coated layer consists mainly of the MgO and $Mg_2SiO_4$ phases after the oxidation reaction. The hardness of the coated AZ31 alloy increased with increasing coating time. In addition, the corrosion rates of the coated and uncoated AZ31 alloys were examined by salt spray tests according to ASTM B 117 and the results show that the corrosion resistance of the coated AZ31 alloy was superior to that of the un-coated AZ31 alloy.

The Characteristic Study of Plasma Electrolytic Oxidation in AZ31B Magnesium Alloy

  • Yu, Jae-Yong;Choi, Soon-Don;Yu, Jae-In;Yun, Jae-Gon;Ko, Hoon;Jung, Yeon-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1746-1751
    • /
    • 2015
  • In this study low voltage Plasma Electrolytic Oxidation (PEO) was utilized to eliminate high voltage PEO drawbacks such as high cost, dimensional deformation and porosity. Low voltage PEO produces a thin coating which causes low corrosion resistance. In order to solve such problem, 0.1~0.6M pyrophosphates were added in a bath containing 1.4M NaOH, and 0.35M Na2SiO3. 70 V PEO was conducted at 25℃ for 3 minutes. Chemical composition, morphology and corrosion resistance of the anodized coating were analyzed. The anodized film was composed of MgO, Mg2SiO4, and Mg2O7P2. The morphology of film showed appropriately dense structure and low porosity in the anodized layers. It is found that low voltage Plasma Electrolytic Oxidation in cooperation with phosphating treatment can provide a good corrosion protection for the AZ31B magnesium alloy.

Evaluation of Structural characteristic and corrosion resistance of anodic film depending on the concentration of Sodium Silicate on the AZ31B Magnesium Alloy by MAO process (AZ31 마그네슘 합금의 MAO(micro-arc oxidation) 처리 시 첨가 되는 $Na_{2}SiO_{3}$의 농도에 따른 양극피막의 구조 및 부식특성 평가)

  • Lee, Dong-Gil;An, Yun-Mo;Kim, Yong-Hwan;Jeong, Won-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.221-222
    • /
    • 2009
  • AZ31 마그네슘 합금에 AC 전류를 인가하여 MAO(micro-arc oxidation) process로 양극산화 할 때 알카리 전해액에 첨가되는 sodium silicate(Na2SiO3)의 농도에 따라 형성되는 양극 피막의 구조와 부식특성을 평가하였다. 전해질의 조성은 10g/1 KOH와 4g/1 KF 혼합 전해액에 sodium silicate를 (5, 10, 20, 40, 80)g/1로 달리하여 첨가한 후 $40mA/cm^2$의 전류밀도로 20분간 MAO 처리한 후 양극피막의 조직을 SEM, XRD, EPMA를 이용하여 분석하였고 동전위 분극시험으로 부식 거동을 평가하였으며 micro-vickers 경도계를 이용하여 단면의 경도를 측정하였다.

  • PDF

Mechanical and metallurgical properties of diffusion bonded AA2024 Al and AZ31B Mg

  • Mahendran, G.;Balasubramanian, V.;Senthilvelan, T.
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.147-160
    • /
    • 2012
  • In the present study, diffusion bonding was carried out between AZ31B magnesium and AA2024 aluminium in the temperature range of $405^{\circ}C$ to $475^{\circ}C$ for 15 min to 85 min and 5MPa to 20 MPa uniaxial loads was applied. Interface quality of the joints was assessed by microhardness and shear testing. Also, the bonding interfaces were analyzed by means of optical microscopy, scanning electron microscopy, energy dispersive spectrometer and XRD. The maximum bonding and shear strength was obtained at $440^{\circ}C$, 12 MPa and 70 min. The maximum hardness values were obtained from the area next to the interface in magnesium side of the joint. The hardness values were found to decrease with increasing distance from the interface in magnesium side while it remained constant in aluminium side. It was seen that the diffusion transition zone near the interface consists of various phases of $MgAl_2O_4$, $Mg_2SiO_4$ and $Al_2SiO_5$.

Characteristics of Films Formed on AZ31B Magnesium Alloy by Chemical Oxidation Process in Potassium Permanganate Solution (과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가)

  • Kim, Min-Jeong;Kim, Hyoung-Chan;Yoon, Seog-Young;Jung, Uoo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.44-49
    • /
    • 2011
  • The films formed on AZ31B magnesium alloy were prepared from alkaline solution composed of potassium permanganate and sodium hydroxide. The immersion tests were carried out at the different concentration of sodium hydroxide and pre-treatment method in 5 minute. The morphology and the phase composition of the film were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the film in 5.0% NaCl solution was evaluated using potentiodyanmic polarization. Open circuit potential in developing film was examined with time. The thin and transparent film was mainly composed of MgO and $Mg(OH)_2$. The film with the best corrosion resistance was obtained at $70^{\circ}C$ bath temperature, 1.6 M concentration of sodium hydroxide and chemical pre-treatment.

Prediction of Creep Deformation and Short Time Rupture Life of AZ31 Magnesium Alloy below 0.5Tm (0.5Tm 이하에서의 AZ31 마그네슘합금의 크리이프 변형과 단시간 파단수명예측)

  • Kang, D.M.;An, J.O.;Jeon, S.H.;Koo, Y.;Sim, S.B.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.558-563
    • /
    • 2008
  • The initial strain, the applied stress exponent, the activation energy, and rupture time in AZ31 magnesium alloy have been measured in order to predict the deformation mechanism and rupture life of creep over the temperature range of 423-443K. Creep tests were carried out under constant applied stress and temperature, and the lever type tester and automatic temperature controller was used for it, respectively. The experimental results showed that the applied stress exponent was about 9.74, and the activation energy for creep, 113.6KJ/mol was less than that of the self diffusion of Mg alloy including aluminum. From the results, the mechanism for creep deformation seems to be controlled by cross slip at the temperature range of 423-443K. Also the higher the applied stress and temperature, the higher the initial strain. And the rupture time for creep decreased as quadratic function with increasing the initial strain in double logarithmic axis.