• Title/Summary/Keyword: AZ31 alloy

Search Result 319, Processing Time 0.027 seconds

An Experimental Study on Anisotropic Tensile Properties of AZ31 Mg Alloy (AZ31B 마그네슘 합금의 인장특성 및 이방성의 실험적 연구)

  • Kim, S.H.;Lee, H.W.;Lee, G.A.;Kim, G.T.;Choi, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.254-257
    • /
    • 2007
  • In this paper, anisotropic tensile properties of the AZ31B Mg-alloy sheet are obtained with the tensile test at elevated temperatures. Change of microscopic structures and the hardness is inspected after the solution heat treatment process in order to confirm the micro-structural stability of the used sheet metal. Results obtained from tensile tests show that it is very difficult to apply the conventional modeling scheme with the assumption of strain hardening to the forming analysis of the magnesium alloy sheet which shows the strain-softening behavior at the elevated temperature.

  • PDF

Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet (AZ31B 합금판재 성형관련 기초물성 시험 및 해석 연구)

  • Kim, S.H.;Park, K.D.;Jang, J.H.;Kim, K.T.;Lee, H.W.;Lee, G.A.;Choi, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.366-369
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

  • PDF

Microstructure and Corrosion Properties of Plasma Electrolytic Oxide Coatings on AZ31 Magnesium Matrix Composite (플라즈마 전해 산화 처리한 AZ31 및 Al18B4O33w/AZ31 마그네슘 복합재료 피막의 미세구조 및 부식특성)

  • Cheon, Jinho;Park, Yongho;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.270-274
    • /
    • 2011
  • Plasma electrolytic oxidation (PEO) treatment was performed on squeeze cast AZ31 alloy and $Al_{18}B_4O_{33}w/AZ31$ composite. Scanning electron microscope (SEM) was employed to characterize the surface morphology and cross-section microstructure of the coating. The phase structures of the PEO coating were analyzed by X-ray diffraction (XRD). The corrosion resistance of the PEO coating was evaluated by electrochemical method. The results showed that the $Al_{18}B_4O_{33}$ whisker on the surface of the composite was decomposed and $MgAl_2O_4$ was formed in the PEO coating layer of $Al_{18}B_4O_{33}w/AZ31$ composite during PEO treatment. As a result, the electrochemical corrosion potential of the PEO coated $Al_{18}B_4O_{33}w/AZ31$ composite was increased compared with that of AZ31 alloy.

Corrosion and Surface treatments of AZ31 Mg Alloy (Z31 마그네슘 합금의 부식 및 표면처리)

  • Mun, Seong-Mo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.43-43
    • /
    • 2014
  • 본 연구에서는 AZ31 마그네슘 합금의 부식특성을 살펴보고, AZ31 마그네슘 합금의 내식성을 향상시킬 수 있는 효과적이며 경제적인 표면처리 방법을 모색하였으며, AZ31 마그네슘 합금의 부식이 일어나는 이유 및 부식을 억제하기 위하여 사용가능한 방법에 대하여 토의하고자 한다.

  • PDF

Influence of initial ECAP passes on the anisotropic behavior of an extruded magnesium alloy (초기 등통로각압출 공정 횟수가 압출된 마그네슘 합금의 이방성에 미치는 영향)

  • Bae, Seong-Hwan;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.34-38
    • /
    • 2016
  • In this paper, a transversely isotropic behavior of AZ31 Mg alloy produced by equal-channel angular pressing (ECAP) process was investigated through tensile test and microstructure observation. The effects of initial ECAP pass number on the anisotropic behavior and mechanical properties of the Mg alloy are evaluated after conventional direct extrusion test, which are carried out at a temperature of $200^{\circ}C$. As a result of the tensile test in three directions ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ to the extrusion direction of the sheet) at room temperature, elongation of as-extruded AZ31 alloy(ECAP for 0 pass) showed an unusual anisotropic behavior depending on the extrusion direction although the yield strength and tensile strength are similar to the ECAPed AZ31 alloy. After ECAP for 4 passes at $200^{\circ}C$, microstructural observations of ECAPed magnesium alloy showed a significant grain refinement, which is leading to an equiaxed grain structure with average size of $2.5{\mu}m$. The microstructures of the extruded billet are observed by the use of an electron back-scattering diffraction (EBSD) technique to evaluate of the influence on the grain refinement during extrusion process and re-crystallization mechanism of AZ31 Mg alloy.

Evaluation of FSW Weldability of Wrought and Casting Mg Alloys (전신 및 주조된 Mg합금의 FSW 접합성 평가)

  • Noh Joong-Suk;Kim Heung-Ju;Chang Woong-Seong;Bang Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.53-57
    • /
    • 2004
  • Friction stir weldability of AZ31B-H24, AZ61A-F and AZ91C-F Mg alloys were studied using microstructural observation and mechanical tests. The microstructure of stir zone(SZ) was coarse in AZ31B-H24 alloy whereas it was very fine both in AZ61A-F and AZ91C-F alloys. The hardness of SZ was remarkably increased by very fine recrystallized grains both in AZ61A-F and AZ91C-F alloys. On the other hand, the hardness of SZ was decreased in AZ31B-H24 due to the coarse microstructure. In SZ, AZ91C-F alloy showed very high hardness values because of dispersion hardening of $Mg_{17}$Al$_{12}$($\beta$ phase) and Al solid solution hardening. Because of more $Mg_{ 17}Al_{12}($\beta$ phase)$ intermetallic compounds, Mg alloy with high Al content showed poor mechanical properties.s.

Microstructural Feature of Discontinuous Precipitates Formed by Furnace Cooling in AZ91 Magnesium Alloy (AZ91 마그네슘 합금에서 노냉으로 생성된 불연속 석출물의 미세조직 특징)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.5
    • /
    • pp.231-236
    • /
    • 2018
  • The purpose of this study was to investigate the microstructural characteristics and hardness distribution of AZ91 magnesium alloy furnace-cooled to room temperature after solution treatment, and to compare the results with those of as-cast condition. The as-cast alloy showed a partially divorced eutectic ${\beta}(Mg_{17}Al_{12})$ phase and discontinuous precipitates (DPs) with a lamellar morphology, while only DPs were observed in the furnace-cooled alloy. The DPs in the furnace-cooled AZ91 alloy had various apparent interlamellar spacings, which would be ascribed to the different transformation temperatures during the furnace cooling. The average hardness for the furnace-cooled alloy is similar to that for the as-cast alloy. It is interesting to note that the hardness values of the furnace-cooled alloy were distributed over a narrower range than those of the as-cast alloy. This is likely to be caused by the relatively more homogeneous microstructure of the furnace-cooled alloy in comparison with the ascast one.

Grain Evolution during Bulge Blow forming of AZ31 Alloy (AZ31 합금의 온간 부풀림 성형시 결정립 변화에 관한 연구)

  • Baek, S.G.;Lee, Y.S.;Lee, J.H.;Kown, Y.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.452-455
    • /
    • 2008
  • In the present study, blow forming characteristics of commercially roiled AZ31 alloy sheets were investigated. Two different kinds of AZ31 sheets were originally fabricated by using direct casting and strip casting methods respectively. Both sheets have similar grain sizes of about $7{\mu}m$ with a relatively equiaxed structure after rolling. A series of tensile tests were carried out to get flow behavior in terms of temperature and strain rate. Also, grain size effect was investigated by annealing as-received sheet at elevated temperatures. Elongation increased with temperature increment as well expected. However, the differences in tensile test condition did not give much difference in elongation even at the temperature range where a large elongation would be expected with such as fine grain of $7{\mu}m$. Blow forming experiments showed that forming condition did not result in higher difference in dome height. However, the interesting feature from this study was that formability of this AZ31 alloy got different with stress condition. Firstly, biaxial stress condition might result in lower temperature and strain rate dependencies compared to uniaxial tension results for both DC and SC sheets. Secondly, DC showed slower grain growth in uniaxial tension than in biaxial stress state while SC has much higher grain growth rage in uniaxial tension than in bulging.

  • PDF

A Study on Effect of Temperature of Press Forging on AZ31 Magnesium Alloy

  • Hwang, Jong-Kwan;Kang, Dae-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.66-71
    • /
    • 2004
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast-ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, it is studied about the forming characteristics of press forging of AZ31 magnesium alloy by MSC/MARC in case of material having one boss and MSC/Supeiforge in case of material having multi-boss with heat transfer analysis during deformation at elevated temperature. For these results it is simulated about temperature distribution, strain distribution, and stress distribution of AZ31 Magnesium alloy. During the press forging, foot regions of bosses showed greater temperature rise than other areas of AZ31 sheet. Finally the plastic strain of AZ31 sheet did not remarkably vary with increasing temperature from 373 to 473K, while it significantly increased as the forming temperature increased from 473 to 573K, which is related with the change in micro-structures, such as dynamic re-crystallization occurring during the deformation process.

  • PDF

Effect of Sodium Aluminate Concentration in Electrolyte on the Properties of Anodic Films Formed on AZ31 Mg Alloy by Plasma Electrolytic Oxidation (AZ31 마그네슘 합금의 플라즈마 전해 산화에서 Sodium Aluminate 농도가 산화막 특성에 미치는 영향)

  • Lee, Jong-Seok;Baek, Hong-Gu;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.5
    • /
    • pp.227-232
    • /
    • 2012
  • Magnesium alloy have good physical properties such as good castability, good vibration absorption, high strength/weight ratios. Despite the desirable properties, the poor resistance of Mg alloy impedes their use in many various applications. Therefore, magnesium alloy require surface treatment to improve hardness, corrosion and wear resistance. Plasma Electrolytic Oxidation (PEO) is one the surface treatment methods to form oxide layer on Mg alloy in alkali electrolyte. In comparison with Anodizing, there is environmental process having higher hardness and faster deposition rate. In this study, the characteristics of oxide film were examined after coating the AZ31 Mg alloy through the PEO process. We changed concentration of sodium aluminate into $K_2ZrF_6$, KF base electrolyte. The morphologies of the coating layer were characterized by using scanning electron microscopy (SEM). Corrosion resistance also investigated by potentiodynamic polarization analysis. As a result, propertiy of oxide layer were changed by concentration of sodium aluminate. Increasing with concentration of sodium aluminate in electrolyte, the oxidation layer was denser and the pore size was smaller on the surface.