• 제목/요약/키워드: AZ31 alloy

검색결과 319건 처리시간 0.03초

차체 제작을 위한 레이저용접 마그네슘 TWB 판넬 (MAGNESIUM TWB PANEL WITH LASER WELDING FOR AUTO BODY ASSEMBLY)

  • 이목영;장웅성;윤병현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1312-1316
    • /
    • 2007
  • Strip casted and rolled magnesium sheet is become exiting material for car manufacturer, due to its better formability and specific strength compare with conventional extruded sheet. TWB technology was attractive for car body designer, because it saves the weight of the car without strength loss. In this study, the laser welding performance of magnesium sheet was investigated for Mg TWB panel manufacturing. The material was strip casted and rolled magnesium alloy sheet contains 3 wt% Al and 1 wt% Zn (AZ31). Lamp pumped Nd:YAG laser of 2kW was used and its laser light was delivered by optical fiber of 0.6mm core diameter to material surface with focusing optics of 200mm focal length for TWB welding. The microstructure of weld bead was investigated to check internal defects such as inclusion, porosity and cracks. Also mechanical properties and formability were evaluated for press forming of car body. For the results, there was no crack but inclusion or porosity on weld at some conditions.The tensile strength of weld was over 95% of base metal. Inner and outer panel of engine hood were press formed and assembled at elevated temperature.

  • PDF

경량합금 반용융 압출 기술 개발 - Park 2. 반용융 압출 공정 기술 (Development of Thixoextrusion Process for Light Alloys - Part 2. Thixoextrusion Process for Light Alloys)

  • 김세광;윤영옥;장동인;조형호
    • 한국주조공학회지
    • /
    • 제26권5호
    • /
    • pp.217-221
    • /
    • 2006
  • The main emphasis of this study was to utilize thixoextrusion process for improving extrudability of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy. The results of thixbextrusion experiments about microstructures and extrusion pressures were compared with conventional hot extrusion results. The maximum extrusion pressure of thixoextrusion was greatly decreased compared with that of conventional hot extrusion. It was pointed out that the extrusion temperature dependence of the maximum extrusion pressure was large and the influence of extrusion temperature on the improvement of extrudability was remarkable in thixoextrusion. This will contribute to extrudability in terms of extrusion pressure, which in turn means that shorter process time is required and smaller extrusion machine can be applied for the same operation. The elongated grains to extrusion direction were generally observed during conventional hot extrusion, while the thixoextruded microstructures were isotropic.

마그네슘 박판의 전자부품 적용을 위한 마이크로 디버링에 관한 연구 (A study on micro-deburring of thin magnesium plate for application of electronic products)

  • 이정인;김태완;곽재섭;정영득
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.51-54
    • /
    • 2008
  • Drill process is usually used to manufacture a industry about processing, Therefore, the burr problem is very significant, The burrs took place when drill process. And then, sometimes, the burrs are often caused of some problems during automatic such as no good quality products and having good surface roughness products. And also, this paper had some experiments using magnesium. Specially, the magnesium is one of the non-ferromagnetic materials. Magnesium has attracted a lot of interest for using the industry. They offer a possible alternative to steel and aluminum in automotive and aero industries to satisfy the lightweight requirement. also, magnesium has good specific strength and absorbs vibration in occurring working process. So, it has good quality of product processing. And then, it is one of the lightest materials being used to electronic product's cases and automotive because of lightweight and miniaturization. But this material has not widely used all of the industry due to its natural property. If the magnesium is contacted water, it will cause the exploration. But, nowadays many of people study magnesium to safe their experiment and to widely use this industry.

  • PDF

마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발 (Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys)

  • 이동욱;김영훈;문명준
    • Corrosion Science and Technology
    • /
    • 제17권1호
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

Nd:YAG 레이저를 이용한 마그네슘 합금 판재의 용접성 (II) -용접부의 기계적 특성과 미세조직- (Weldability of Magnesium Alloy Sheet by Nd:YAG Laser (II) -Mechanical Properties and Microstructure of Weldment-)

  • 김종도;이정한;이재범;이문용;박현준
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.116-116
    • /
    • 2009
  • 마그네슘 합금은 구조용으로 사용 가능한 금속 재료 중 가장 가벼운 소재이며, 동시에 비강도 및 비강성과 같은 기계적 특성이 우수하여 알루미늄 합금의 뒤를 이을 차세대 경량 재료로써 주목을 받고 있다. 더욱이 석유자원의 대부분을 소비하고 있는 운송기기 분야에서는 경량화를 통한 연비향상과 배출가스 저감이 가장 큰 과제이며, 이 문제를 해결하기 위한 노력의 일환으로 최경량 소재인 마그네슘 합금의 사용량은 더욱 증가할 것으로 기대된다. 한편 기존의 마그네슘 합금 관련 연구는 새로운 합금의 개발에 치우쳐 있었으며, 상대적으로 이들 합금을 활용하기 위한 가공기술, 특히 용접에 대한 연구는 아직까지 많이 부족한 실정이다. 이는 철강재와 비교하여 마그네슘 합금의 고유물성이 용접의 관점에서는 상당히 열악하기 때문으로, 마그네슘은 융점 및 비점은 낮은 반면, 증기압과 열전도율은 높고 표면장력 및 점성은 낮은 특성을 가지고 있다. 그러므로 타 공법에 비해 상대적으로 입열이 적고 고속용접이 가능한 레이저의 적용이 최적으로 판단된다. 따라서 본 연구에서는 Nd:YAG 레이저를 사용하여 압연판재로 상용화되어 있는 AZ31B 마그네슘 합금의 맞대기 용접성을 조사하였으며, 용접부의 미세조직과 용접조건에 따른 용접부의 기계적 특성을 비교 및 검토하였다. 용접부의 기계적 특성은 인장 및 경도시험을 통해 평가하였다. 그 결과 레이저 출력 1.2kW를 적용한 경우에 안정적인 강도를 얻을 수 있었으며 레이저 출력 1.5kW, 용접속도 80mm/sec의 조건에서 모재 인장강도 대비 103% 그리고 연신율 대비 47.1%의 최적의 결과가 얻어졌다. 또한 용접부의 경도는 모재와 동등하거나 다소 높은 수준이었다. 이는 용접시 용접부내 잔류하는 알루미늄에 의한 고용 강화 효과와 금속간화합물의 석출 빈도 증가, 그리고 레이저 용접의 특징인 급열급랭 공정에 기인한 결정립 미세화의 영향 때문으로 사료된다. 한편 용접부 미세조직을 관찰한 결과, 열영향부의 존재는 두드러지지 않았으며 용융경계부에서는 주상정이, 그리고 용접부 가운데에서는 등축정이 관찰되었다.

  • PDF

열반복 시험 및 유한요소해석을 통한 Mg/Mg-Al18B4O33 경사기능 재료의 열피로특성에 관한 연구 (A study on the Thermal Fatigue Properties of Mg/Mg-Al18B4O33 Functionally Graded Material by Thermal Cycling Test and Finite Element Method)

  • 이욱진;양준성;최계원;박용하;박봉규;박익민;박용호
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.538-544
    • /
    • 2008
  • MMCs were manufactured in two different forms. One was two-layered non FGM composite and the other was four-layered FGM composite. The matrix used in this study was AZ31 magnesium alloy and the reinforcement was $Al_{18}B_4O_{33}$. The composite materials contained reinforcement fibers with a volume fraction of 0, 15, 25 and 40%. Squeeze infiltration method was used for the fabrication of each block. The thermal properties of the FGM alloy and composite joints were studied by conducting thermal cycling tests. The numerical calculation (the finite elements method-FEM) results exhibited a good agreement with the experimental results. Thermal stresses induced by thermal cycling test were clearly reduced in the functionally graded materials.

마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석 (Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs)

  • 강정은;유지윤;최인규;유제형;이창환
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

자동차 부품용 마그네슘 합금 관재 압출공정조건 분석 (Analysis of Tube Extrusion Process Conditions Using Mg Alloy for Automotive Parts)

  • 박철우;김호윤
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1675-1682
    • /
    • 2012
  • 경량화는 대기오염과 자원고갈의 측면에서 매우 중요하게 인식되고 있어, 많은 자동차용 부품이 Al 및 Mg 합금으로 대체되었으며, 관련 연구가 지속적으로 증가하고 있다. 그러나 Mg 합금은 Al 합금에 비해 높은 재료비와 난성형성으로 인한 낮은 생산성 때문에 제한적으로 적용되고 있다. 본 연구에서는 FEA를 이용하여 자동차 범퍼 백 빔용 관재에 대한 공정조건을 분석하였으며, 생산성을 향상시킬 수 있는 방법을 확립하였다. 물성치 확보를 위해 물성시험을 수행하였으며, 소성변형 중 발생하는 열 관련 물성을 정의하기 위하여 단순형상에 대한 실험과 해석을 수행하였다. 이후 온도조건 및 램 속도를 고려하여 제품에 대한 해석을 수행하였다. 이를 통하여 압출공정조건을 확립하였으며, 표면결함이 없는 제품을 성형하는데 성공하였다.

온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구 (Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing)

  • 이영선;이광석;김대용
    • 소성∙가공
    • /
    • 제21권1호
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.