• Title/Summary/Keyword: AWS (Automatic weather station)

Search Result 105, Processing Time 0.03 seconds

Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas (도심지 토사재해 고위험지역 극치강우 시간분포 시나리오 분석)

  • Yoon, Sunkwon;Jang, Sangmin;Rhee, Jinyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.57-69
    • /
    • 2016
  • In this study, we analyzed the extreme rainfall distribution scenarios based on probable rainfall calculation and applying various time distribution models over the landslide high risk zones in urban areas. We used observed rainfall data form total 71 ASOS (Automated Synoptic Observing System) station and AWS (Automatic Weather Station) in KMA (Korea Meteorological Administration), and we analyzed the linear trends for 1-hr and 24-hr annual maximum rainfall series using simple linear regression method, which are identified their increasing trends with slopes of 0.035 and 0.660 during 1961-2014, respectively. The Gumbel distribution was applied to obtain the return period and probability precipitation for each duration. The IDF (Intensity-Duration-Frequency) curves for landslide high risk zones were derived by applying integrated probability precipitation intensity equation. Results from IDF analysis indicate that the probability precipitation varies from 31.4~38.3 % for 1 hr duration, and 33.0~47.9 % for 24 hr duration. It also showed different results for each area. The $Huff-4^{th}$ Quartile method as well as Mononobe distribution were selected as the rainfall distribution scenarios of landslide high risk zones. The results of this study can be used to provide boundary conditions for slope collapse analysis, to analyze sediment disaster risk, and to use as input data for risk prediction of debris flow.

A Study on the Occurrence Characteristics of Tropical Night Day and Extreme Heat Day in the Metropolitan City, Korea (한반도 대도시의 폭염 및 열대야 발생 특성에 대한 연구)

  • Kim, Eun-Byul;Park, Jong-Kil;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.873-885
    • /
    • 2014
  • To identify the characteristics of extreme heat events and tropical nights in major cities, the correlations between automated synoptic observing station (ASOS), automatic weather station (AWS), and temperature in seven metropolitan areas were analyzed. Temperatures at ASOS were found to be useful sources of the reference temperature of each area. To set the standard for identifying dates of extreme heat events in relation to regional topography and the natural environment, the monthly and yearly frequency of extreme heat in each region was examined, based on the standards for extreme heat day (EHD), tropical night day (TND), and extreme heat and tropical night day (ETD). All three cases identified 1994 as the year with the most frequent heat waves. The frequency was low according to all three cases in 1993, 2003 and 2009. Meanwhile, the yearly rate of increase was the highest in 1994, followed by 2010 and 2004, indicating that the frequency of extreme heat changed significantly between 1993 and 1994, 2003 and 2004, and 2009 and 2010. Therefore all three indexes can be used as a standard for high temperature events. According to monthly frequency data for EHD, TND, and ETD, July and August accounted for 80% or more of the extreme heat of the entire year.

A Case Study on the Easterly Wind Characteristics around Gangneung City (강릉지역 동풍 기류 특성에 대한 사례 분석 연구)

  • Lee, Sun-Gi;Kim, Won-Gi;Kim, Sang-Kook;Kim, Do-Soo;Ryu, Shi-Chan;Jeon, Sang-Sik;Park, Kee-Won;Bang, So-Young;Kim, Yeon-Hee;Nam, Jae-Cheol
    • Atmosphere
    • /
    • v.15 no.4
    • /
    • pp.191-202
    • /
    • 2005
  • This study was conducted to estimate how vertically high and horizontally long a sea breeze occurred around Gangneung of the Korean peninsula would be reached to an inland. Geographically, gangneung is located on the center of the east coast shaping an arc, and a coastal line around gangneung has a form extending northwestward and southeastward, respectively. Therefore, an inflow of the northerly has similar effects of the sea breeze since a deep valley of Daegwallyeong, which is one of main ridges of the Taebaek mountains, not only reaches northeastward up to this region but also plays the part of the steering gear changing a wind direction from northerly to easterly, this is, the wind from sea. First of all, the study had defined the sea breeze as a wind blown from NNE to ESE, clockwise. And then, we analyzed characteristics of the sea breeze occurred around gangneung in view of the maximum wind speed and the wind direction for October 1st, 2003 through September 30th, 2004, the upper air database for May through June of 2004, and the wind vector database of AWS (Automatic Weather System). All meteorological information is collected at the weather station of gangneung and by the AWS which is being scattered around this region. Finally, the study figures out that how horizontally long a sea breeze would be reached depends on a level of the easterly inflow. At the first step of the inflow of the sea breeze, the wind from NNW blows into this region by keeping up the speed $3m{\cdot}s^{-1}$, and effects of the northerly are dominated with time and the wind at the inland blows out southwestward cause of the surface friction at the next step. On the other hand, there is no change of wind direction in the inflow at Daegwallyeong because a surface friction of there is smaller than around gangneung, relatively. In other word, the easterly blows toward Daegwallyeong. However, the wind speed is not higher than that of the coast around gangneung.

A Case Study of Strong Wind Event over Yeongdong Region on March 18-20, 2020 (2020년 3월 18일-20일 영동지역 강풍 사례 연구)

  • Ahn, Bo-Yeong;Kim, Yoo-Jun;Kim, Baek-Jo;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.479-495
    • /
    • 2021
  • This study investigates the synoptic (patterns of southern highs, northern lows, and lows rapidly developed by tropopause folding), thermodynamic, and kinematic characteristics of a strong wind that occurred in the Yeongdong region of South Korea on March 18-20, 2020. To do so, we analyzed data from an automatic weather station (AWS), weather charts, the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis, rawinsonde, and windprofiler radars. The daily maximum instantaneous wind speed, exceeding 20 m s-1, was observed at five weather stations during the analysis period. The strongest instantaneous wind speed (27.7 m s-1) appeared in the Daegwallyeong area. According to the analysis of weather charts, along with the arrangement of the north-south low-pressure line, the isobars were moved to the Yeongdong area. It showed a sine wave shape, and a strong wind developed owing to the strong pressure gradient. On March 19, in the northern part of the Korean Peninsula, with a drop in atmospheric pressure of 19 hPa or more within one day, a continuous strong wind was developed by the synoptic structure of the developing polar low. In the adiabatic chart observed in Bukgangneung, the altitude of the inversion layer was located at an altitude of approximately 1-3 km above the mountaintop, along with the maximum wind speed. We confirmed that this is consistent with the results of the vertical wind field analysis of the rawinsonde and windprofiler data. In particular, based on the thermodynamic and kinematic vertical analyses, we suggest that strong winds due to the vertical gradient of potential temperature in the lower layer and the development of potential vorticity due to tropopause folding play a significant role in the occurrence of strong winds in the Yeongdong region.

Variations of Summertime Temperature Lapse Rate within a Mountainous Basin in the Republic of Korea -A case study of Punch Bowl, Yanggu in 2009- (우리나라 산악분지의 여름철 기온감률 변화 -2009년 양구 펀치볼을 사례로-)

  • Choi, Gwang-Yong;Lee, Bo-Ra;Kang, Sin-Kyu;John, Tenhunen
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.4
    • /
    • pp.339-354
    • /
    • 2010
  • In this study, diurnal and intra-seasonal variations of summertime temperature lapse rate (TLR) by synoptic weather conditions in a mountainous basin are examined based on hourly temperature data observed in 2009 summer at an Automatic Weather Station (AWS) network deployed in Haean basin (called Punch Bowl), Yanggu in the Republic of Korea. Summertime average TLR between the top and bottom of the basin is $-0.53^{\circ}C$/100m. Due to its diurnal variations, TLR shows the lowest by $-0.25^{\circ}C$/100m at 6AM, while it maximizes up to $-0.85^{\circ}C$/100m between 4PM~5PM. Comparisons of daily average TLRs by synoptic weather patterns reveal that the magnitude of TLRs is greatest in the order of rainy days ($-0.63^{\circ}C$/100m), heavy rainfall days ($-0.53^{\circ}C$/100m), partly cloudy days ($-0.47^{\circ}C$/100m), and sunny days ($-0.39^{\circ}C$/100m). At dawn on sunny days in summer, strong cooling pools accompanying temperature inversion layers are formed within the basin, while on heavy rainfall days, warming pools are observed due to relatively low TLRs associated with the reduction of surface radiation cooling by clouds.

  • PDF

Numerical Study on Wind Resources and Forecast Around Coastal Area Applying Inhomogeneous Data to Variational Data Assimilation (비균질 자료의 변분자료동화를 적용한 남서해안 풍력자원평가 및 예측에 관한 수치연구)

  • Park, Soon-Young;Lee, Hwa-Woon;Kim, Dong-Hyeok;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.983-999
    • /
    • 2010
  • Wind power energy is one of the favorable and fast growing renewable energies. It is most important for exact analysis of wind to evaluate and forecast the wind power energy. The purpose of this study is to improve the performance of numerical atmospheric model by data assimilation over a complex coastal area. The benefit of the profiler is its high temporal resolution and dense observation data at the lower troposphere. Three wind profiler sites used in this study are inhomogeneously situated near south-western coastal area of Korean Peninsula. The method of the data assimilation for using the profiler to the model simulation is the three-dimensional variational data assimilation (3DVAR). The experiment of two cases, with/without assimilation, were conducted for how to effect on model results with wind profiler data. It was found that the assimilated case shows the more reasonable results than the other case compared with vertical observation and surface Automatic Weather Station(AWS) data. Although the effect of sonde data was better than profiler at a higher altitude, the profiler data improves the model performance at lower atmosphere. Comparison with the results of 4 June and 5 June suggests that the efficiency with hourly assimilated profiler data is strongly influenced by synoptic conditions. The reduction rate of Normalized Mean Error(NME), mean bias normalized by averaged wind speed of observation, on 4 June was 28% which was larger than 13% of 5 June. In order to examine the difference in wind power energy, the wind power density(WPD) was calculated and compared.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

Characteristics of Satellite Brightness Temperature and Rainfall Intensity over the Life Cycle of Convective Cells-Case Study (대류 세포의 발달 단계별 위성 휘도온도와 강우강도의 특성-사례연구)

  • Kim, Deok Rae;Kwon, Tae Yong
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.273-284
    • /
    • 2011
  • This study investigates the characteristics of satellite brightness temperature (TB) and rainfall intensity over the life cycle of convective cells. The convective cells in the three event cases are detected and tracked from the growth stage to the dissipation stage using the half-hourly infrared (IR) images. For each IR images the values of minimum, mean, and variance for the convective cell's TBs and the sizes of convective cells are calculated and also the relationship between TB and rainfall intensity are investigated, which is obtained using the pixel values of satellite TB and the ground rainfall intensity measured by AWS (Automatic Weather Station). At the growth stage of the convective cells, the TB's variance and cloud size consistently increased, whereas TB's minimum and mean consistently decreased. At this stage the empirical relationships between TB and rainfall intensity are statistically significant and their slopes (intercepts) in absolute values are relatively large (small) compared to those at the dissipation stage. At the dissipation stage of the convective cells, the variability of TB distributions shows the opposite trend. The statistical significance of the empirical relationships are relatively weak, but their slopes (intercepts) vary over life cycle. These results indicate that satellite IR images can provide valuable information in identifying the convective cell's maturity stage and in the growth stage, they may be used in providing considerably accurate rainfall estimates.

Wind Field Change Simulation before and after the Regional Development of the Eunpyeong Area at Seoul Using a CFD_NIMR_SNU Model (CFD_NIMR_SNU 모형을 활용한 은평구 건설 전후의 바람환경 변화 모사 연구)

  • Cho, Kyoungmi;Koo, Hae-Jung;Kim, Kyu Rang;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.539-555
    • /
    • 2011
  • Newly constructed, high-rise dense building areas by urban development can cause changes in local wind fields. Wind fields were analyzed to assess the impact on the local meteorology due to the land use changes during the urban redevelopment called "Eunpyeong new town" in north-western Seoul using CFD_NIMR_SNU (Computational Fluid Dynamics, National Institute of Meteorological Research, Seoul National University) model. Initial value of wind speed and direction use analysis value of AWS (Automatic Weather Station) data during 5 years. In the case of the pre-construction with low rise built-up area, it was simulated that the spatial distribution of horizontal wind fields depends on the topography and wind direction of initial inflow. But, in the case of the post-construction with high rise built-up area, it was analyzed that the wind field was affected by high rise buildings as well as terrain. High-rise buildings can generate new circulations among buildings. In addition, small size vortexes were newly generated by terrain and high rise buildings after the construction. As high-rise buildings act as a barrier, we found that the horizontal wind flow was separated and wind speed was reduced behind the buildings. CFD_NIMR_SNU was able to analyze the impact of high-rise buildings during the urban development. With the support of high power computing, it will be more common to utilize sophisticated numerical analysis models such as CFD_NIMR_SNU in evaluating the impact of urban development on wind flow or channel.

A Study on the relationship of between meteo-hydrological characteristics and malaria - case of korea - (수문 기상학적 환경특성과 말라리아 발생간의 상관관계에 관한 연구 -한반도를 사례로-)

  • Choi, Don-Jeong;Park, Kyung-Won;Suh, Yong-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.457-457
    • /
    • 2012
  • 말라리아는 매개체에 의한 전염병으로써 국내에서는 이미 1970년대에 사라진 것으로 알려져 있다. 하지만 1990년대에 재발생하여 2000년대 초반까지 경기도와 강원도 북부지역에서 환자가 증가하는 양상을 보였다. 사람에게서 발병하는 말라리아는 4종으로 알려져 있으나 우리나라의 경우 이 중 오로지 삼일열 원충감염에 의한 것으로 밝혀졌다(질병관리 본부, 2010). 기후변화는 질병의 발생에 영향을 미칠 수 있는 중요한 요인 중 하나로써 매개체에 의한 질병의 경우 기후요소는 매개체의 번식과 활동에 적지않은 영향을 미친다. 특히 말라리아의 경우 병원균을 가진 개체수와 모기에 물리는 횟수, 감염된 모기의 수, 그 모기에 사람이 물리는 횟수와 관계가 있으나 기온과 강수량, 습도의 변화 등 기후 및 수문학적 요소와도 밀접한 관계를 가지는 것으로 밝혀졌다(Lindsay & Birley, 1996; 박윤형 외, 2006; 신호성, 2011 재인용). 본 연구의 목적은 한반도 기후-수문학적 환경특성 및 변화를 파악하고 지역적 말라리아 발생과의 상관관계를 도출하며 이를 기반으로 하여 말라리아 발생의 변동을 예측하는 것이다. 분석에 사용된 데이터는 말라리아 발생자료의 경우, 질병관리 본부에서 제공하는 2001년 1월~2011년 12월 까지의 약 16000건의 발병자료가 포함 되었고 분석의 시간 단위는 2WEEKS 이며 전국 251개의 시군구에서 발생한 전염병을 합산하였다. 기상자료의 경우 기상청 기후자료 관리 시스템에서 제공하는 동일 기간대의 평균기온, 최고(최저)기온, 강수량, 신적설, 평균 해면기압, 평균 이슬점 온도, 평균 상대습도, 평균풍속, 평균운량, 일조시간 자료를 활용하였다. 본 연구에 사용된 AWS(Automatic Weather Station)자료의 경우 기본적으로 point 형태의 관측자료이고, 분석기간 동안의 개수에서도 차이가 있기 때문에 공간 내삽기법인 kriging을 활용하여 행정구역과 zonal하는 방법으로 재가공 하였다. 지역의 수문학적 특성의 경우 10*10 DEM을 기반으로 ESRI ArcGIS 소프트웨어의 ArcHydro 기능을 이용 하여 유역을 생성하는 방법을 채택하였다. 본 연구에서는 통계적 모형을 기본으로 기후 및 수문 특성과 말라리아 발생간의 상관관계를 분석하였으며 시계열 자료의 특성상 포아송 분포의 Generalized Estimation Equation 과 Generalized Linear Model을 이용한다(Baccini 외, 2008; 신호성, 2011). 또한 말라리아 잠복시간의 지연효과 및 전염병의 계절 영향을 반영하기 위하여 Fourier transform 을 적용 하였다.

  • PDF