• 제목/요약/키워드: AVSR

검색결과 6건 처리시간 0.015초

KMSAV: Korean multi-speaker spontaneous audiovisual dataset

  • Kiyoung Park;Changhan Oh;Sunghee Dong
    • ETRI Journal
    • /
    • 제46권1호
    • /
    • pp.71-81
    • /
    • 2024
  • Recent advances in deep learning for speech and visual recognition have accelerated the development of multimodal speech recognition, yielding many innovative results. We introduce a Korean audiovisual speech recognition corpus. This dataset comprises approximately 150 h of manually transcribed and annotated audiovisual data supplemented with additional 2000 h of untranscribed videos collected from YouTube under the Creative Commons License. The dataset is intended to be freely accessible for unrestricted research purposes. Along with the corpus, we propose an open-source framework for automatic speech recognition (ASR) and audiovisual speech recognition (AVSR). We validate the effectiveness of the corpus with evaluations using state-of-the-art ASR and AVSR techniques, capitalizing on both pretrained models and fine-tuning processes. After fine-tuning, ASR and AVSR achieve character error rates of 11.1% and 18.9%, respectively. This error difference highlights the need for improvement in AVSR techniques. We expect that our corpus will be an instrumental resource to support improvements in AVSR.

발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법 (Lip Reading Method Using CNN for Utterance Period Detection)

  • 김용기;임종관;김미혜
    • 디지털융복합연구
    • /
    • 제14권8호
    • /
    • pp.233-243
    • /
    • 2016
  • 소음환경에서의 음성인식 문제점으로 인해 1990년대 중반부터 음성정보와 영양정보를 결합한 AVSR(Audio Visual Speech Recognition) 시스템이 제안되었고, Lip Reading은 AVSR 시스템에서 시각적 특징으로 사용되었다. 본 연구는 효율적인 AVSR 시스템을 구축하기 위해 입 모양만을 이용한 발화 단어 인식률을 극대화하는데 목적이 있다. 본 연구에서는 입 모양 인식을 위해 실험단어를 발화한 입력 영상으로부터 영상의 전처리 과정을 수행하고 입술 영역을 검출한다. 이후 DNN(Deep Neural Network)의 일종인 CNN(Convolution Neural Network)을 이용하여 발화구간을 검출하고, 동일한 네트워크를 사용하여 입 모양 특징 벡터를 추출하여 HMM(Hidden Markov Mode)으로 인식 실험을 진행하였다. 그 결과 발화구간 검출 결과는 91%의 인식률을 보임으로써 Threshold를 이용한 방법에 비해 높은 성능을 나타냈다. 또한 입모양 인식 실험에서 화자종속 실험은 88.5%, 화자 독립 실험은 80.2%로 이전 연구들에 비해 높은 결과를 보였다.

잡음 환경 하에서의 입술 정보와 PSO-NCM 최적화를 통한 거절 기능 성능 향상 (Improvement of Rejection Performance using the Lip Image and the PSO-NCM Optimization in Noisy Environment)

  • 김병돈;최승호
    • 말소리와 음성과학
    • /
    • 제3권2호
    • /
    • pp.65-70
    • /
    • 2011
  • Recently, audio-visual speech recognition (AVSR) has been studied to cope with noise problems in speech recognition. In this paper we propose a novel method of deciding weighting factors for audio-visual information fusion. We adopt the particle swarm optimization (PSO) to weighting factor determination. The AVSR experiments show that PSO-based normalized confidence measures (NCM) improve the rejection performance of mis-recognized words by 33%.

  • PDF

A Novel Integration Scheme for Audio Visual Speech Recognition

  • Pham, Than Trung;Kim, Jin-Young;Na, Seung-You
    • 한국음향학회지
    • /
    • 제28권8호
    • /
    • pp.832-842
    • /
    • 2009
  • Automatic speech recognition (ASR) has been successfully applied to many real human computer interaction (HCI) applications; however, its performance tends to be significantly decreased under noisy environments. The invention of audio visual speech recognition (AVSR) using an acoustic signal and lip motion has recently attracted more attention due to its noise-robustness characteristic. In this paper, we describe our novel integration scheme for AVSR based on a late integration approach. Firstly, we introduce the robust reliability measurement for audio and visual modalities using model based information and signal based information. The model based sources measure the confusability of vocabulary while the signal is used to estimate the noise level. Secondly, the output probabilities of audio and visual speech recognizers are normalized respectively before applying the final integration step using normalized output space and estimated weights. We evaluate the performance of our proposed method via Korean isolated word recognition system. The experimental results demonstrate the effectiveness and feasibility of our proposed system compared to the conventional systems.

Multimodal audiovisual speech recognition architecture using a three-feature multi-fusion method for noise-robust systems

  • Sanghun Jeon;Jieun Lee;Dohyeon Yeo;Yong-Ju Lee;SeungJun Kim
    • ETRI Journal
    • /
    • 제46권1호
    • /
    • pp.22-34
    • /
    • 2024
  • Exposure to varied noisy environments impairs the recognition performance of artificial intelligence-based speech recognition technologies. Degraded-performance services can be utilized as limited systems that assure good performance in certain environments, but impair the general quality of speech recognition services. This study introduces an audiovisual speech recognition (AVSR) model robust to various noise settings, mimicking human dialogue recognition elements. The model converts word embeddings and log-Mel spectrograms into feature vectors for audio recognition. A dense spatial-temporal convolutional neural network model extracts features from log-Mel spectrograms, transformed for visual-based recognition. This approach exhibits improved aural and visual recognition capabilities. We assess the signal-to-noise ratio in nine synthesized noise environments, with the proposed model exhibiting lower average error rates. The error rate for the AVSR model using a three-feature multi-fusion method is 1.711%, compared to the general 3.939% rate. This model is applicable in noise-affected environments owing to its enhanced stability and recognition rate.

모바일 환경에서의 시각 음성인식을 위한 눈 정위 기반 입술 탐지에 대한 연구 (A Study on Lip Detection based on Eye Localization for Visual Speech Recognition in Mobile Environment)

  • 송민규;;김진영;황성택
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.478-484
    • /
    • 2009
  • 음성 인식 기술은 편리한 삶을 추구하는 요즘 추세에 HMI를 위해 매력적인 기술이다. 음성 인식기술에 대한 많은 연구가 진행되고 있으나 여전히 잡음 환경에서의 성능은 취약하다. 이를 해결하기 위해 요즘은 청각 정보 뿐 아니라 시각 정보를 이용하는 시각 음성인식에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 모바일 환경에서의 시각 음성인식을 위한 입술의 탐지 방법을 제안한다. 시각 음성인식을 위해서는 정확한 입술의 탐지가 필요하다. 우리는 입력 영상에서 입술에 비해 보다 찾기 쉬운 눈을 이용하여 눈의 위치를 먼저 탐지한 후 이 정보를 이용하여 대략적인 입술 영상을 구한다. 구해진 입술 영상에 K-means 집단화 알고리듬을 이용하여 영역을 분할하고 분할된 영역들 중 가장 큰 영역을 선택하여 입술의 양 끝점과 중심을 얻는다. 마지막으로, 실험을 통하여 제안된 기법의 성능을 확인하였다.