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Abstract

Recent advances in deep learning for speech and visual recognition have accel-

erated the development of multimodal speech recognition, yielding many

innovative results. We introduce a Korean audiovisual speech recognition cor-

pus. This dataset comprises approximately 150 h of manually transcribed and

annotated audiovisual data supplemented with additional 2000 h of untran-

scribed videos collected from YouTube under the Creative Commons License.

The dataset is intended to be freely accessible for unrestricted research pur-

poses. Along with the corpus, we propose an open-source framework for auto-

matic speech recognition (ASR) and audiovisual speech recognition (AVSR).

We validate the effectiveness of the corpus with evaluations using state-of-the-

art ASR and AVSR techniques, capitalizing on both pretrained models and

fine-tuning processes. After fine-tuning, ASR and AVSR achieve character

error rates of 11.1% and 18.9%, respectively. This error difference highlights

the need for improvement in AVSR techniques. We expect that our corpus will

be an instrumental resource to support improvements in AVSR.
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1 | INTRODUCTION

For speech recognition, humans depend on both auditory
and visual cues. Such multimodal speech recognition is
useful when a modality is impaired owing to factors such
as noise interference. Therefore, speech recognition using
multimodal inputs is among the longstanding topics in
this field. Moreover, rapid advancements in deep learning
technology have led to remarkable progress in both the
speech and visual recognition domains. This progress has
naturally led to the development of multimodal speech
recognition methods that integrate conventional
speech and visual recognition techniques or audiovisual

speech recognition (AVSR), resulting in numerous stud-
ies and innovative outcomes [1, 2].

With the development of deep learning techniques,
many different solutions for speech recognition have been
developed in recent years. They include automatic speech
recognition (ASR) using only audio information, visual
speech recognition or lip reading using only video infor-
mation, and AVSR using audiovisual information. As ASR
relies solely on speech, its performance drops in noisy
environments [3]. Visual speech recognition uses facial
videos and extracts features from lip movements, thus
being insensitive to noise in audio. Compared with ASR,
however, visual speech recognition is very challenging,
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even for humans, owing to the lack of information and
ambiguities in the input data [4]. AVSR leverages both
audio and visual information to improve the recognition
performance and increase robustness in noisy environ-
ments. This research topic has been widely explored, and
various representative studies are available [5, 6].

In previous research on AVSR, lip reading emerged as
a predominant area of study, leading to the development
of numerous datasets specifically tailored for this pur-
pose. Initial research efforts were primarily concentrated
on the recognition of words, short phrases, and simple
sentences articulated in a deliberate manner. These data-
sets were collected in highly controlled environments
and employing predefined scripts as reference points [7,
8]. With the advent and development of deep learning
techniques, the size of such datasets has notably
expanded [9, 10], aiming to accommodate the increased
complexity of deep learning models and include a variety
of languages, such as Korean [11].

The styles of speech in datasets should be diversified
beyond reading of predefined scripts. To capture fully
natural and unstructured audiovisual data, numerous
datasets have begun sourcing material from existing
media platforms such as broadcast shows and movies.
However, these sources are predominantly produced in
English. Moreover, most of these datasets have focused
extensively on monologue-style videos, such as news pre-
sentations or lectures.

In this paper, we present a real-world dataset for
Korean AVSR focused on the spontaneous conversations
between multiple participants. Furthermore, we release a
complete system from data preparation to performance
evaluation of ASR and AVSR using publicly available
toolkits and models. We aim to assist researchers in this
field to easily set up a baseline system and use the con-
structed corpus. We expect that this corpus and the asso-
ciated methods will help accelerate the development of
AVSR and related techniques.

1.1 | Related work

Recently, various remarkable studies on AVSR have been
conducted. Originating from Google Bidirectional Encoder
Representations from Transformers (BERT), the adoption
of self-supervision for pretraining expansive deep learning
models has ushered in considerable advancements across
various research domains, encompassing both speech and
vision. In speech recognition, pretrained models such as
wav2vec 2.0 [12] and Hu-BERT [13] with self-supervised
learning techniques have demonstrated comparable ASR
performance even with small amounts of labeled speech
data. AVSR also necessitates pretrained models learned

from large-scale unlabeled data owing to the shortage of
synchronized transcription data from audio and video
recordings. AV-HuBERT is one of the most successful
approach to provide a large pretrained model for
AVSR [14]. The pretrained model with 1759 h of unla-
beled data combined with only 30 h of labeled data
showed a high AVSR performance.

In [5], the lack of data to train a large model
was addressed with a different approach. Transcription
was generated for large unlabeled audiovisual datasets
using the publicly available pretrained ASR models. With
pseudo-labeled data and an end-to-end conformer archi-
tecture [2], state-of-the-art results were achieved on the
LRS2 [4] and LRS3-TED [15] corpora. For the unlabeled
datasets, 1323 h of unlabeled data from the AVSpeech
corpus [16] and 1307 h from the VoxCeleb2 corpus [17]
were used as an additional training set.

Labeled data are easier to obtain for ASR than for
AVSR. Hence, training large ASR models using massive
datasets has become common [18–20]. Recently released
by OpenAI, the Whisper model employed a large amount
of web speech data, approximately 680 000 h, and pre-
trained the transformer encoder–decoder structure under
weak supervision [19]. This model exhibits robust recog-
nition and translation capabilities, not only for English
but also for over 100 other languages, including Korean.

1.2 | Existing datasets

We briefly describe currently available audiovisual datasets.
Lip reading, a topic of significant interest, is supported by
datasets such as AVLetters [7], CUAVE [8], and GRID [21].
These datasets primarily feature read speeches of isolated
alphabets and both isolated and connected digits. For more
complex tasks, such as recognizing phrases and sentences
with larger vocabularies, datasets like AV-TIMIT [10], AVI-
CAR [22], OuluVS [23], and OuluVS2 [9] have been devel-
oped. Notably, the AVICAR and OuluVS2 datasets include
multiple viewing angles, such as side and frontal views.
Nevertheless, these datasets were collected in well-
controlled environments with predefined scripts.

The recent surge in AVSR applications has created
the demand for datasets collected in real-world environ-
ments. This need led to the collection and labeling of
existing audiovisual data. The LRW [24] and LRS2 [4]
datasets, which focus on words and sentences, respec-
tively, were among the first datasets created for real-
world applications. To further expand the scope, the
LRS3-TED dataset [1] was introduced. Regarding Korean
audiovisual datasets, the OLKAVS dataset [11] features a
large scale of 1150 h from over 1000 speakers reading
sentences from multiple views. However, a
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comprehensive real-world audiovisual dataset is yet to be
developed in Korean. Table 1 lists characteristics of exist-
ing datasets divided into three categories according to the
degree of freedom in speech.

The LRS3-TED dataset is the most widely used data-
set for AVSR. It comprises 151819 videoclips from TED
Talks, totaling 439 h of data. The dataset comprises 9506
videos and includes English subtitles from manual tran-
scription. Using ASR systems, word-level alignment was
produced, and sentences were extracted from this align-
ment based on the punctuation marks in the transcript.
As a result, 118 516 (408 h), 31 982 (30 h), and 1321 clips
(0.9 h) were obtained for the pretraining, training–valida-
tion, and test sets, respectively. Additionally, the dataset
provides facial region data, extracted using a face detector
implemented using a convolutional neural network and
based on the single shot multibox detector [26].

1.3 | Contributions

We introduce a novel dataset, the Korean multi-speaker
spontaneous audiovisual (KMSAV) speech corpus. This
corpus is designed for use in various fields of audiovisual
research including AVSR, active speaker detection (ASD),
lip reading, and audiovisual speech enhancements. This
is the first audiovisual corpus of multi-speaker spontane-
ous conversations in the Korean language. With its size,
encompassing 150 h of transcribed content and an addi-
tional 2000 h of unlabeled data, it is sufficiently large to
be suitable for both supervised and unsupervised training
of audiovisual data processing algorithms.

Distinctively, this corpus emphasizes multiple speakers
conversing naturally, in contrast to existing datasets, which
primarily feature lecture-style, single-person speech. Similar
to the LRS3-TED dataset, the constructed KMSAV
dataset also provides frame-wise coordinates of facial
regions. This enables researchers to concentrate on the
development of core algorithms by mitigating the effort
required for data preprocessing. We constructed this corpus
using YouTube videos available under the Creative Com-
mons License, such that the data can be used freely. As
with the LRS3-TED dataset, we extracted sentences from
the video and the facial region of the active speaker per
sentence.

Using the KMSAV dataset, we conducted ASR and
AVSR experiments to assess its quality on open-source
toolkits and models. For ASR, we employed Whisper and
ESPnet [27]. With pre-released models and an inference
tool, we observed a character error rate (CER) ranging from
15.3% to 32.2% depending on the model size. By fine-tuning
with the training portion of the KMSAV dataset, the CER
decreased to between 11.1% and 23.5%. For the AVSR
experiments, we employed the AV-HuBERT toolkit and its
pretrained models. Notably, although these pretrained
models were trained on English data, they still showed a
reasonable performance on the KMSAV dataset, achieving
a CER of 21.7% with audio-only inputs and 18.9% with
audiovisual inputs. The same evaluation metrics and data-
set were used in all the experiments to ensure a fair
comparison.

We have ascertained that ASR trained with a consid-
erable volume of labeled data surpasses AVSR, even
though supplementary visual information is integrated

TAB L E 1 Summary of existing audiovisual datasets.

Dataset
Environment/
source Language

No. of
utterances

No. of
subjects Utterances

AVLetters [7] Lab English 780 10 Isolated English alphabets

CUAVE [8] Sound booth English 7.9k 36 Isolated and connected digits

GRID [21] Sound booth English 34k 34 Simple command sentences

AV-TIMIT [10] Lab English 4.4k 223 Phonetically balanced short sentences

OuluVS [23] Lab English 817 20 Short phrases

OuluVS2 [9] Studio English 1.5k 53 Phrases and sentences

AVICAR [22] Car English 59k 86 Phrases and sentences

OLKAVS [11] Studio Korean 2.5M 1107 Read sentences

LRW [24] Broadcast news English 539k >1000 Isolated words in spontaneous sentences

LRS2 [1] Broadcast news English 144k – Spontaneous sentences

LRS3-TED [15] Online lecture English 152k 9545 Spontaneous sentences

VoxCeleb1 [25] YouTube video English 154k 1251 Spontaneous sentences without transcription

VoxCeleb2 [17] YouTube video Multilingual 1.1M 6112 Spontaneous sentences without transcription

KMSAV (Ours) YouTube video Korean >43.8k – Spontaneous sentence
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into AVSR. This emphasizes the prevailing developmen-
tal disparity between ASR and AVSR. We expect substan-
tial advancements in AVSR techniques in the near
future, for which our work may play a pivotal role. All
the resources required to replicate our results, including
the datasets, code, and models, are publicly available
online (https://github.com/etri/kmsav).

The contributions of this study are summarized as fol-
lows:The first real-world Korean audiovisual dataset. To
the best of our knowledge, this is the first large-scale,
real-world audiovisual dataset with high-quality Korean
transcription. The dataset not only includes transcrip-
tions but also tags for speech overlap and filler words. In
addition, manually verified frame-wise facial regions are
provided to standardize data preprocessing.
Open-source framework for audiovisual research. We uti-
lized open-source frameworks to conduct ASR and AVSR
experiments on the KMSAV dataset. All the resources
needed to replicate our results, including datasets, codes,
and models, will be made available online.
Baseline ASR and AVSR system. We present a baseline
ASR and AVSR system using the KMSAV dataset. The
system encompasses all processes, from data preparation
to performance evaluation. We expect that the proposed
standardized procedure will facilitate comparisons with
results from other studies and support further research.

2 | KMSAV DATASET

The KMSAV dataset is the first Korean dataset designed
for AVSR of natural conversations between multiple
speakers. To construct a real-world corpus, we performed
the following steps:

1. source videos from YouTube,
2. manually transcribe them at the utterance level using

audio,
3. extract facial regions from video frames aligned with

the respective utterances, and
4. manually verify the extracted audiovisual utterances.

In this section, we detail the KMSAV dataset con-
struction procedure and its characteristics. The pipeline
to collect, segment, and refine the audiovisual utterances
is shown in Figure 1.

2.1 | Data collection

To construct the real-world corpus, we sourced YouTube
videos based on the following criteria:

1. The video must be licensed for public use.
2. The video should feature natural conversations in

Korean involving multiple speakers.
3. At least half of the video duration should consist of

speaking voices from the participants.
4. Voices not emanating from individuals present in the

video (e.g., commentator narration and translated
speech) are not considered valid speaking samples.

5. A diverse range of subjects and conversation formats
should be gathered.

In line with the selection criteria, we curated a collec-
tion of 5214 videos, accounting for approximately 2162 h
of data. We then grouped these videos into 12 distinct
categories considering their content and format, as
detailed in Table 2. Because the KMSAV corpus empha-
sizes multi-speaker conversations, we tallied the number
of speakers actively participating within each video. Not
every speaker may be visible on the screen simulta-
neously, and the count represents the total number of
speakers appearing throughout a video. While transcrib-
ing their speech, we also assigned a speaker index for
each video, which can be useful for applications such as
speaker diarization. Moreover, with numerous instances
of speaker overlap, we carefully annotated the intervals
of overlap to facilitate research in applications such as
overlap detection and speech separation. The detailed
histogram of the number of people is shown in Figure 2.
Approximately half of the videos (52.5%) consisted of
clips with two speakers. Videos containing from three to

F I GURE 1 Pipeline to collect, segment, and refine audiovisual utterances from video.
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five speakers constituted 37.1%, and those containing
more than five speakers constituted 10.2% of the
collected data.

2.2 | Speech transcription

Approximately 10% of the collected videos were ran-
domly selected and transcribed by human annotators.
While subtitles provided with the videos were available
and referenced, all transcriptions were essentially created
anew by the annotators. During transcription, the audio
data were divided into utterances. Typically, an utterance
corresponded to a sentence, but it might encompass two
or more sentences if splitting was impractical due to brief

pauses or other reasons. The script and timestamp of
each utterance were noted. If there was an overlap
between two or more speakers, the utterances were sepa-
rately annotated to ensure they could be distinguished
for use. In addition, a speaker index was assigned to each
utterance. The speaker index was distinct only within
each video but not across different videos.

Because the corpus was primarily intended for
Korean speech recognition, transcription rules were spe-
cifically elaborated for this purpose. First, common filler
words or hesitations words in Korean were actively
tagged for subsequent use. Depending on the application,
such as translation, these filler words could be excluded
from the system output. Second, all the transcriptions
were represented in the numerical and original forms for
digits and the English alphabet, rather than in the textual
or transliterated form. In Korean, numerals can be writ-
ten and pronounced in multiple ways. In addition,
English words in the Roman alphabet are commonly
used in everyday life. To enhance the readability of the
output of the trained speech recognition system, we
aimed to perform consistent and uniform transcription.
Lastly, to enhance readability of the machine output,
punctuation marks such as periods, question marks, and
exclamation marks were scrupulously added.

2.3 | Utterance extraction from videos

During transcription, utterances were extracted solely
based on audio information from each video. We then
identified the utterances that aligned well with the

TAB L E 2 Categories and description of videos selected for KMSAV corpus.

Category Description No. of videos Total length (h)
Avg.

All Trans. All Trans. no. of speakers

beau Videos related to makeup or beauty 313 45 80.0 5.9 2.5

docu Documentaries on various topics 42 9 17.7 2.2 6.0

dram TV or web dramas 65 33 22.1 7.2 7.2

ente Entertainment programs or variety shows 368 14 208.4 3.3 4.0

game Reviews and conversations on games 177 3 56.6 0.6 3.1

inte Interviews on various topics 1748 61 778.5 23.2 2.6

issu Discussion programs on current events 1891 271 756.4 81.5 3.5

movi TV or web movies 17 0 7.1 0 6.4

mukb “Mukbang” or eating show 279 12 111.6 3.5 3.7

news News broadcasts 25 3 14.0 0.9 3.5

scie Lectures on science 270 61 104.2 19.7 4.5

vlog Video blog 19 0 5.8 0 3.5

Total - 5214 512 2162.1 147.9 3.3

F I GURE 2 Histogram of number of speakers in a video, who

are actively participating in the conversation.
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corresponding video content for a speaker. To this end,
we applied ASD to identify the facial region of the cur-
rent speaker per utterance. For ASD, we used TalkNet-
ASD [28], where an audiovisual cross-attention mecha-
nism is utilized to capture long-term speaking evidence.
To reliably extract data from individual speakers in
videos featuring multiple free-flowing conversations, we
implemented the following procedure:

1. Initially, all the videos were processed using ASD to
identify the tracks of every active speaker. A track was
a temporal progression of a rectangular region where
the active speaker was presumed to be located. During
track extraction, brief interruptions without any active
speaker lasting up to 24 ms were permitted.

2. The track identified in the previous step was not syn-
chronized with the audio utterances. Hence, for each
utterance segmented during transcription, we deter-
mined the corresponding video track. Only tracks that
overlapped by more than 50% of the utterance dura-
tion were retained.

3. In the final step, we further refined the segments by
discarding audiovisual utterances where the starting
and ending points between audio and video differed
by more than 1 s.

After applying the abovementioned procedure, we
retained 53 375 utterances, which accounted for approxi-
mately 89.0 h out of the total 147.9 h of transcribed
audiovisual content.

For every audiovisual utterance, we conducted a
manual verification, with human workers meticulously
checking the transcriptions and extracted videos. This
review task was delegated to workers who had not been
previously involved with the project. Consequently, any
utterances with potential issues were excluded from the
final compilation. The excluded utterances included
falsely detected facial regions (5.12%), overlapping utter-
ances from multiple speakers (4.47%), and inaccurate
utterance segmentation (0.22%).

Ultimately, from the collected videos, a total of
43 805 utterances spanning 84.4 h were extracted. The

transcribed audiovisual data were divided into training,
validation, and test sets at the video level. This division
was made to ensure a consistent distribution of video cat-
egories across sets. Details of the data quantity for each
split are presented in Table 3.

Figure 3 shows the histogram of the utterance lengths
for the training set and the validation and test sets,
respectively.

Most utterances (79.5%) were shorter than 10 s, while
utterances ranging from 10 to 20 s accounted for 18.3%,
those between 20 and 30 s comprised 1.5%, and those lon-
ger than 30 s accounted for 0.6% of the data. The longest
utterance spanned 104 s.

2.4 | Characteristics of KMSAV dataset

The LRS3-TED dataset is a widely used audiovisual
corpus for AVSR, lip reading, and other tasks. We
collected the KMSAV dataset following a similar proce-
dure to collect the LRS3-TED dataset but considering
the Korean language. The KMSAV dataset, as a multi-
speaker database, exhibits characteristics distinct from
LRS3-TED and other datasets. First, the videos are
selected to include dialogues with multiple speakers,
resulting in frequent turn changes and overlapping
speech intervals. Table 4 presents the frequency of turn
changes in conversations, given by the average number
of turn changes over 10 s for each domain.

TAB L E 3 Dataset after segmenting utterances from video.

Split No. Length of No. Length of
of videos videos (h) of utterances utterances (h)

Train 474 135.4 39 926 77.5

Valid. 16 5.8 2032 3.6

Test 22 6.7 1847 3.4

All 512 147.9 43 805 84.4

F I GURE 3 Histograms of extracted utterance lengths for

(A) training and (B) validation and test sets.
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Additionally, the extent of overlapping speech is given
by the ratio of its duration. In domains such as beau
and ente, turn changes and overlaps are more com-
mon than in domains such as news and scie.

Second, the KMSAV data are sourced from natural
conversations, as opposed to script readings in controlled
laboratory settings or lecture environments. This real-
world data presents challenges, such as frequent changes
in the orientation of speakers’ faces and instances where
the lips are partially or fully obscured. It is common for
speakers to be positioned sideways relative to the camera
and microphones partially occluding facial features, thus
hindering lip reading.

To assess the dataset applicability to lip reading,
facial landmark detection was performed using dlib [29],
a conventional machine learning library. The face
direction angles were calculated by finding the centroid
of the outer face landmarks and the centroid of the
eye, nose, and mouth landmarks. The outcomes of this
detection process and corresponding angles are detailed
in Table 5. Although the KMSAV dataset provides a
higher failure rate in facial landmark detection than
the LRS3-TED dataset, the angles estimated for success-
fully detected frames are comparable, suggesting the
suitability of the KMSAV dataset for lip-reading
studies.

The speaking style in the KMSAV dataset is spontane-
ous rather than dictatorial, adding to the complexity of
speech recognition. Consequently, the error rate is
expected to be considerably higher than that obtained
from the LRS3-TED dataset, which has a word error rate
below 2.0% when used in state-of-the-art AVSR
methods [5].

3 | ASR

To demonstrate the effectiveness of the constructed
KMSAV dataset for ASR, we conducted ASR experiments
using the OpenAI Whisper system. Whisper models were
trained using approximately 640 000 h of speech data,
including 438 000 h of English, and 800 h Korean speech
recognition data [19].

Initially, without fine-tuning, we deployed the Whis-
per models to decode the test data in the KMSAV dataset.
For these experiments, we used the Whisper tools and
models as explained at https://github.com/openai/
whisper. During decoding, we set the beam size to 3 with-
out conditioning the current output on previous text. The
second column of Table 6 lists the CER for various Whis-
per model sizes. Notably, even without fine-tuning, the
results were acceptable, especially given the spontaneous
nature of the utterances.

The performance was quantified in terms of the CER
owing to the inherent ambiguity in Korean word spacing.

TABL E 6 Speech recognition performance with OpenAI

Whisper models.

Whisper model Zero-shot Fine-tuned ERR

tiny 32.22 23.54 26.9

base 24.30 18.40 24.3

small 18.83 14.04 25.4

medium 16.02 11.90 25.7

large-v2 15.31 11.08 27.6

Note: CERs (%) are shown for the zero-shot and fine-tuned models for each
size of the models. The error reduction ratio (ERR, %) is also shown.

TAB L E 4 Multi-speaker characteristics of KMSAV dataset.

Category Turn change %Overlap Category Turn change %Overlap

beau 3.77 18.48 inte 1.58 10.57

docu 0.68 6.12 issu 0.87 8.78

dram 2.52 11.11 mukb 2.78 7.62

ente 3.66 24.25 news 0.59 5.80

game 2.12 6.64 scie 0.26 2.14

Note: Turn change is the average number of speaker changes in a videoclip over 10 s, and %Overlap is the duration of overlapping speech divided by the entire
speech duration.

TAB L E 5 Results of facial landmark detection and orientation estimation for each frame of transcribed utterances in KMSAV and

LRS3-TED datasets.

%Failed frames Horizontal orientation No. of frames

KMSAV 11.7 8:99�7:26 7.6M

LRS3-TED 8.83 10:1�7:66 2.8M

Note: The horizontal orientation is averaged for all the frames, and the mean and standard deviation are shown.
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All punctuation marks were included in the error calcula-
tions, and no text cleanup or postprocessing was applied
to the recognizer output. Throughout the experiments in
this study, we used the same error metrics for consistency.

We used the ESPnet toolkit (https://github.com/
espnet/espnet) for fine-tuning the Whisper model. This
fine-tuning utilized the training split of the KMSAV data-
set. Over 10 training epochs, without employing early
stopping, we averaged the three models that demon-
strated the best accuracy on the validation split of the
KMSAV dataset. Despite having only 77.5 h of fine-
tuning data, we observed a substantial decrease in the
CER across all models, resulting in a relative error reduc-
tion of approximately 25%.

4 | AVSR

To evaluate the effectiveness of the KMSAV dataset in
audiovisual contexts, we conducted AVSR experiments
using the same setup as for ASR. To highlight the bene-
fits of the visual modality, we also tested speech recogni-
tion under noisy conditions. For these experiments, we
employed the AV-HuBERT framework.

AV-HuBERT is an AVSR framework that uses audio
and visual information by expanding the HuBERT input to
multiple modalities. Conventional AVSR relies on super-
vised learning, necessitating a large amount of labeled data.
On the other hand, AV-HuBERT employs self-supervised
learning, thereby enhancing the performance while using
only 10% of the conventionally required labeled data.

4.1 | Evaluation of pretrained model and
data modality

We fine-tuned the pretrained model using the KMSAV
dataset as described in [6]. Multiple pretrained models
were available with different sizes and training methods.

We selected the base and large models that had been
pretrained with LRS3-TED and English portion of Vox-
Celeb2 data, totaling 1759 h of unlabeled audiovisual
data. In addition, we evaluated both the clean-pretrained
and noisy-pretrained variants per model size. The noisy-
pretrained models, during their pretraining, incorporated
a noise-augmentation technique to enhance their noise
robustness. During fine-tuning, we used 77.5 h from the
KMSAV training set. A randomly initialized transformer
decoder was coupled with a pretrained transformer
encoder. For the first 4000 updates, the encoder remained
frozen, allowing only the decoder to train. In our configu-
ration, the 4000 updates roughly translated to 35 epochs.
Throughout the fine-tuning experiments, we ran
100 epochs and selected the model that demonstrated the
best performance on the validation set as the final model.

Table 7 lists the recognition performance in terms of
CER after fine-tuning the AV-HuBERT model using the
KMSAV dataset. The large model consistently outper-
formed the base model but by a small margin. However,
when the pretrained model was not used and the model
weights were randomly initialized, the CER considerably
deteriorated. This result indicated the benefits of using a
pretrained model. Note that the pretrained models were
trained exclusively on English data and no Korean data
were included.

To investigate the impact of the data modality on the
AVSR performance, we adopted two approaches for fine-
tuning and recognition: using solely audio and combin-
ing both audio and video. Integrating visual information
with audio led to a reduction in CER across all the con-
figurations, showing 9.8% to 16.6% of error
reduction rate.

Notably, the lowest AVSR CER was 18.86%. However,
upon fine-tuning and evaluation using the configuration
detailed in Section 4, we obtained a CER of 11.08% for
ASR. This discrepancy may be attributed to the larger
dataset used for pretraining the ASR model, namely,
640 000 h for ASR compared with 1759 h for AVSR.

TAB L E 7 CER (%) of AV-HuBERT models fine-tuned with KMSAV data in different pretraining configurations and input modalities.

Model size Pretrain type Audio only Audiovisual ERR

Base Clean 23.02 19.80 14.0

Noisy 22.94 20.28 11.6

None 66.68 55.62 16.6

Large Clean 21.69 18.86 13.0

Noisy 21.66 19.53 9.8

None 74.83 66.05 11.7

Note: Clean, clean pretraining; noisy, noise-augmented pretraining; none, pretrained model is not used by randomly initializing the weights. Audio only and
audiovisual indicate the data modalities used during fine-tuning and inference. ERR (%) indicates the relative error reduction rate between audio-only and
audiovisual cases.
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4.2 | Evaluation of audio interference

To determine the robustness of the AVSR models to
audio interference, we mixed noise to the test data and
evaluated the recognition results. Table 8 lists the CER
for various pretrained models and fine-tuning methods
when exposed to such noise. For these noise robustness
experiments, only the large pretrained models were
employed.

As the noise source, we used the MUSAN dataset [30],
as described in [6]. This dataset comprises the following
signal categories: speech, music, and noise. We
added each signal in signal-to-noise ratios (SNRs) of 0, 5,
and 10 dB to the input audio signal. all-type indicates
that all categories of signals were selected randomly. As
shown in the first and second rows of Table 8, where
fine-tuning type is Clean, the CER values worsened rap-
idly with increasing noise level. In the second row, where
the pretrained model is large-noisy and fine-tuning
type is Clean, the noise-augmented pretrained model was
used. While the CER still worsened for a lower SNR, a
consistent improvement in performance was observed
compared with the use of the large-clean pretrained
model.

To further enhance the AVSR performance under
noisy conditions, we adopted noise-augmented fine-
tuning, wherein noise was added to the input audio dur-
ing fine-tuning. Adhering to the procedure detailed
in [6], we infused random noise from the MUSAN data-
set into our training data at a 0 dB SNR with a 25%

probability of occurrence during fine-tuning. The AVSR
performance results are listed in the third row of Table 8
for fine-tuning type noisy. The CER under noisy condi-
tions was substantially and consistently enhanced by
applying noise-augmentation fine-tuning. For example,
the CER was reduced by 30.7% for the audiovisual case
(from 47.58% to 32.98%) at 0 dB SNR under interference
type all.

5 | CONCLUSION

To support a variety of research initiatives, such as
speech recognition and speaker diarization, we meticu-
lously transcribed 150 h of content and annotated each
utterance with speaker labels. Particularly for AVSR, we
enriched our dataset with 84.4 h of high-quality data,
which was refined through automated detection and rig-
orous manual review.

We used Whisper and AV-HuBERT as state-of-the-art
pretrained models for ASR and AVSR, respectively, to
conduct speech recognition experiments and thus evalu-
ate the applicability of the constructed KMSAV dataset.
The experiments showed up to 11.8% of CER for ASR
experiments, and 18.9% for AVSR when fine-tuned using
a publicly available large-scale pretrained model. In addi-
tion, we found that the AVSR performance in noisy envi-
ronments was less influenced by audio interference when
using the audio and video modalities than when using
only audio.

TAB L E 8 CER (%) under audio interference at 0 dB, 5 dB, and 10 dB SNRs.

Modality: audio only Modality: audiovisual

Pretrained
model

Fine-tuning
type SNR (dB) All Speech Music Noise All Speech Music Noise

large-clean Clean 0 73.21 95.59 60.46 54.71 56.26 72.70 46.27 40.90

5 53.55 68.47 44.05 39.71 38.43 47.75 33.44 30.81

10 36.95 43.41 32.05 31.28 28.27 31.07 25.48 25.52

Clean 21.69 18.86

large-noisy Clean 0 64.99 82.40 53.19 48.25 47.58 61.62 39.91 37.70

5 46.62 56.11 38.51 36.70 33.93 40.36 29.69 28.87

10 33.18 37.70 29.69 29.39 26.42 28.83 24.42 24.30

Clean 21.66 19.53

large-noisy Noisy 0 54.38 68.84 46.87 43.93 32.98 40.88 30.19 29.22

5 39.94 47.04 35.49 35.38 26.20 30.09 25.00 24.75

10 32.19 34.62 29.91 30.36 22.72 24.00 21.95 22.25

Clean 24.42 19.38

Note: Two Whisper pretrained models, large-clean and large-noisy, were fine-tuned using the KMSAV training data. The “fine-tuning type” indicates
whether noise augmentation was applied (noisy) or not (clean). The modality refers to the types of input data used during both fine-tuning and inference.
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The discrepancy between the best performances of
ASR and AVSR underscores the need for further research
on utilizing multimodal data and fully harnessing the
potential of each modality. All the resources required to
replicate our results, including the datasets, code, and
models, will be made publicly available online.
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