• 제목/요약/키워드: AVO modeling

검색결과 4건 처리시간 0.018초

가스 하이드레이트 부존층의 구조파악을 위한 탄성파 AVO 분석 AVO모델링, AVO역산 (Seismic AVO Analysis, AVO Modeling, AVO Inversion for understanding the gas-hydrate structure)

  • 김건득;정부흥
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.643-646
    • /
    • 2005
  • The gas hydrate exploration using seismic reflection data, the detection of BSR(Bottom Simulating Reflector) on the seismic section is the most important work flow because the BSR have been interpreted as being formed at the base of a gas hydrate zone. Usually, BSR has some dominant qualitative characteristics on seismic section i.e. Wavelet phase reversal compare to sea bottom signal, Parallel layer with sea bottom, Strong amplitude, Masking phenomenon above the BSR, Cross bedding with other geological layer. Even though a BSR can be selected on seismic section with these guidance, it is not enough to conform as being true BSR. Some other available methods for verifying the BSR with reliable analysis quantitatively i.e. Interval velocity analysis, AVO(Amplitude Variation with Offset)analysis etc. Usually, AVO analysis can be divided by three main parts. The first part is AVO analysis, the second is AVO modeling and the last is AVO inversion. AVO analysis is unique method for detecting the free gas zone on seismic section directly. Therefore it can be a kind of useful analysis method for discriminating true BSR, which might arise from an Possion ratio contrast between high velocity layer, partially hydrated sediment and low velocity layer, water saturated gas sediment. During the AVO interpretation, as the AVO response can be changed depend upon the water saturation ratio, it is confused to discriminate the AVO response of gas layer from dry layer. In that case, the AVO modeling is necessary to generate synthetic seismogram comparing with real data. It can be available to make conclusions from correspondence or lack of correspondence between the two seismograms. AVO inversion process is the method for driving a geological model by iterative operation that the result ing synthetic seismogram matches to real data seismogram wi thin some tolerance level. AVO inversion is a topic of current research and for now there is no general consensus on how the process should be done or even whether is valid for standard seismic data. Unfortunately, there are no well log data acquired from gas hydrate exploration area in Korea. Instead of that data, well log data and seismic data acquired from gas sand area located nearby the gas hydrate exploration area is used to AVO analysis, As the results of AVO modeling, type III AVO anomaly confirmed on the gas sand layer. The Castagna's equation constant value for estimating the S-wave velocity are evaluated as A=0.86190, B=-3845.14431 respectively and water saturation ratio is $50\%$. To calculate the reflection coefficient of synthetic seismogram, the Zoeppritz equation is used. For AVO inversion process, the dataset provided by Hampson-Rushell CO. is used.

  • PDF

파쇄대 반사에너지의 AVO 및 복소트레이스 분석에 관한 모형연구 (A Modeling Study on the AVO and Complex Trace Analyses of the Fracture Bone Reflection)

  • 한수형;김지수;하희상;민동주
    • 지구물리와물리탐사
    • /
    • 제2권1호
    • /
    • pp.33-42
    • /
    • 1999
  • 천연가스 저류층의 부존 특성을 파악하는데 주로 이용되고 있는 AVO 및 복소분석법을 파쇄대와 같은 지반환경의 주요 불연속면에 적용하는데 그 초점을 두었다. 연구에 이용된 시험자료는 수평 파쇄구조에 대하여 일반화된 맥스웰체 근사법을 적용한 점탄성매질에서의 수치모형자료이다. 수평 파쇄구조에 대한 AVO분석에서 반사 P파의 특성은 지하매질의 음향 임피던스 차이와 기하학적 계수인 오프셋에 따라 다양하게 나타나며 구배중합 단면도 및 오프셋조절 중합단면도에서 효과적으로 해석되는데, 입사각이 커질수록 진폭이 감쇠되는 특성을 보인다. 중합자료에 대한 복소트레이스 플롯(순간진폭, 순간주파수, 순간위상)에서 파쇄대의 상$\cdot$하부 경계는 강한 진폭과 동일한 위상으로 특징 지워지며, 파쇄대 구간 및 직하부는 저주파 특성을 보인다. 파쇄대와 주위 매질의 Q-대비에 따라 다르게 나타나는 진폭감쇠와 파형분산은 역 Q-필터링으로 효과적으로 보상되었다.

  • PDF

Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics

  • Ahmad, Mubasher;Ahmed, Nisar;Khalid, Perveiz;Badar, Muhammad A.;Akram, Sohail;Hussain, Mureed;Anwar, Muhammad A.;Mahmood, Azhar;Ali, Shahid;Rehman, Anees U.
    • Geomechanics and Engineering
    • /
    • 제17권4호
    • /
    • pp.343-354
    • /
    • 2019
  • The present study demonstrates the application of seismic petrophysics and amplitude versus angle (AVA) forward modeling to identify the reservoir fluids, discriminate their saturation levels and natural gas composition. Two case studies of the Lumshiwal Formation (mainly sandstone) of the Lower Cretaceous age have been studied from the Kohat Sub-basin and the Middle Indus Basin of Pakistan. The conventional angle-dependent reflection amplitudes such as P converted P ($R_{PP}$) and S ($R_{PS}$), S converted S ($R_{SS}$) and P ($R_{SP}$) and newly developed AVA attributes (${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$) are analyzed at different gas saturation levels in the reservoir rock. These attributes are generated by taking the differences between the water wet reflection coefficient and the reflection coefficient at unknown gas saturation. Intercept (A) and gradient (B) attributes are also computed and cross-plotted at different gas compositions and gas/water scenarios to define the AVO class of reservoir sands. The numerical simulation reveals that ${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$ are good indicators and able to distinguish low and high gas saturation with a high level of confidence as compared to conventional reflection amplitudes such as P-P, P-S, S-S and S-P. In A-B cross-plots, the gas lines move towards the fluid (wet) lines as the proportion of heavier gases increase in the Lumshiwal Sands. Because of the upper contacts with different sedimentary rocks (Shale/Limestone) in both wells, the same reservoir sand exhibits different response similar to AVO classes like class I and class IV. This study will help to analyze gas sands by using amplitude based attributes as direct gas indicators in further gas drilling wells in clastic successions.

모델링 기술을 이용한 심해 Gas Hydrate의 탄성파 특성 연구 (Seismic properties of Gas Hydrate using Modeling Technique)

  • 신성렬;여은민;김찬수;김영준;박근필;이호영
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.156-157
    • /
    • 2005
  • Gas hydrate is ice-like crystalline lattice, formed at appropriate temperature and pressure, in which gas molecules are trapped. It is worldwide popular interesting subject as a potential energy. In korea, a seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. In this paper, we had conducted numerical and physical modeling experiments for seismic properties on gas hydrate with field data which had been acquired over the East sea in 1998. We used a finite difference seismic method with staggered grid for 2-D elastic wave equation to generate synthetic seismograms from multi-channel surface seismic survey, OBC(Ocean Bottom Cable) and VSP(Vertical Seismic Profiling). We developed the seismic physical modeling system which is simulated in the deep sea conditions and acquired the physical model data to the various source-receiver geometry. We carried out seismic complex analysis with the obtained data. In numerical and physical modeling data, we observed the phase reversal phenomenon of reflection wave at interface between the gas hydrate and free gas. In seismic physical modeling, seismic properties of the modeling material agree with the seismic velocity estimated from the travel time of reflection events. We could easily find out AVO(Amplitude Versus Offset) in the reflection strength profile through seismic complex analysis.

  • PDF