Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.
AWS (Automated Weather Station) wind data was used to predict the annual energy production of Gangwon wind farm having a total capacity of 98 MW in Korea. Two common wind energy prediction programs, WAsP and WindSim were used. Predictions were made for three consecutive years of 2007, 2008 and 2009 and the results were compared with the actual annual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from both prediction programs were close to the actual energy productions and the errors were within 10%.
악양기상관측망을 대상으로 소형 서버 기반의 기상자료 실시간 표출시스템을 구축하였다. 시스템은 기상관측장비로부터 실시간으로 수집되는 1분간격의 기상자료를 DB로 구축하는 데이터수집 단계와 최대, 최소, 평균, 적산 등의 통계처리에 의해 10분, 1시간, 1일간격의 기상자료를 생성하는 데이터통계 단계, 데이터수집과 통계처리 단계에서 수집된 DB정보를 활용하여 웹서비스 형태로 자료를 보여주는 정보서비스 단계로 각각 구성하였다. DB에 수집된 AWS 기상실황자료는 웹페이지에서 1개 지점, 전체지점, 분석자료의 형태로 서비스하며, 원하는 기간에 대한 기상요소를 사용자가 선택하여 다운로드 받을 수 있도록 구축하였다. 1개 지점에 대한 악양 AWS 정보서비스 페이지에서는 선택한 AWS지점에 대해 시계열 변화추이를 살펴볼 수 있으며, 전체지점에 대한 페이지에서는 악양면 내 고도와 지형특성에 따라 달라지는 기상반응을 지점별로 비교분석 할 수 있도록 서비스를 제공한다. 일별 분석자료 페이지는 하루 동안 수집된 1분 간격 데이터를 요소별로 통계처리하여 테이블 형태로 보여주도록 구성하였다.
대관령 인근 고랭지는 표고가 높아 여름철에도 서늘하여 오래 전부터 씨감자와 호냉성원예작물의 주산지로 발전되어 왔다. 이러한 저온기후자원을 이용하여 농업활동이 이루어지는 고랭지는 산지의 특이한 지형조건 때문에 날씨변화가 심하고 이에 따른 작물피해가 잦다. 기상청 자동기상관 측장치(automated weather station : AWS)가 일부 지점에 설치되어 있으나 기온과 바람 강우량만이 관측되고 있어 농업적인 이용에는 한계가 있다.(중략)
The wind data obtained from an AWS(Automated Weather Station) was used to predict the AEP(annual energy production) of Gangwon wind farm having a total capacity of 98 MWin Korea. A wind energy prediction program based on the Reynolds averaged Navier-Stokes equation was used. Predictions were made for three consecutive years starting from 2007 and the results were compared with the actual AEPs presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from the prediction program were close to the actual AEPs and the errors were within 7.8%.
본 연구에서는 기상청에서 수행하는 기존의 기상 관측에 대한 품질관리 절차 이외에 향후 스마트시티 등에서 활용될 수 있는 머신러닝 기반의 Internet of Things (IoT) 도시기상 관측 자료에 대한 품질검사 기준을 제안한다. 현재 기상청에서 종관기상관측(Automated Synoptic Observing System, ASOS)과 방재기상관측(Automatic Weather System, AWS) 기반으로 설정한 기준이 도시기상에 적합한지 확인하기 위하여 서울시에 설치된 SKT AWS 자료를 기반으로 사용성을 검증하였고, IoT 자체의 데이터가 가지는 특성을 고려하여 최종적으로 머신러닝 기반의 품질검사 알고리즘을 제안하였다. 품질검사 방법으로는 IoT 기기 자체에 대한 결측값 검사, 값 패턴 검사, 충분 데이터 검사, 통계적 범위 이상 검사, 시간값 이상 검사, 공간값 이상 검사를 먼저 수행하고, 기상청에서 제시하고 있는 기상 관측에 대한 품질검사인 물리한계검사, 단계검사, 지속성 검사, 기후범위 검사, 내적 일치성 검사를 5가지 기상요소에 대하여 각각 수행하였다. 제안한 알고리즘의 검증을 위하여 인천광역시 송도에 위치한 관측소에 실제 IoT 도시기상관측 데이터에 이를 적용하였다. 이를 통해 기존의 기상청 QC로는 확인할 수 없었던 IoT 기기가 가질 수 있는 결함을 확인할 수 있고, 알고리즘에 대한 검증을 진행하여 향후 스마트시티에 설치될 IoT 기상관측기기에 대한 품질검사 방법을 제안한다.
In order to monitor local climatic information, twelve automated weather stations (AWS) were installed in alpine area by the Alpine Agricultural Experiment Station, Rural Development Administration (RDA), at the field of major crop located in around highland area, and collected data from 1993 to 2000. Hourly measurements of air and soil temperature (underground 10 cm,20 cm), relative humidity, wind speed and direction, precipitation, solar radiation and leaf wetness were automatically performed and the data could be collected through a public phone line. Datalogger was selected as CR10X (Campbell scientific, LTD, USA) out of consideration for sensers' compatibility, economics, endurance and conveniences. All AWS in alpine area were combined for net work and daily climatic data were analyzed in text and graphic file by program (Chumsungdae, LTD) on 1 km $\times$ 1 km grid tell basis. In this analysis system, important multi-functionalities, monitoring and analysis of local climatic information in alpine area was emphasized. The first objective was to obtain the output of a real time data from AWS. Secondly, daily climatic normals for each grid tell were calculated from geo-statistical relationships based on the climatic records of existing weather stations as well as their topographical informations. On 1 km $\times$ 1 km grid cell basis, real time climatic data from the automated weather stations and daily climatic normals were analyzed and graphed. In the future, if several simulation models were developed and connected with this system it would be possible to precisely forecast crop growth and yield or plant disease and pest by using climatic information in alpine area.
This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.
농촌진흥청 농업기상재해 조기경보시스템은 기상청으로부터 제공되는 기상정보를 활용하여 농장 단위로 상세 추정하고, 추정된 상세 기상정보를 바탕으로 작물의 생육 추정 및 생육이 진행됨에 따라 발생할 수 있는 기상 재해를 예측하여 사용자에게 미리 전달한다. 이들 예측 정보를 검증하기 위한 무인기상관측망을 연구 지역 내에 구축하였으며, 관측망으로부터 수집되는 기상 실황 자료의 실시간 웹 표출 시스템을 구축하였다. 기상관측장비로부터 수집되는 기상요소로는 기온, 습도, 일사량, 강우량, 토양수분, 일조시간, 풍속, 풍향 등이며, 1분단위로 수집 및 10분 간격으로 서버로 전송된다. 자료 표출 시스템은 기상관측장비로 부터 수집되는 1분 단위의 기상자료를 DB로 구축하는 1단계, 수집된 기상자료를 10분, 1시간, 1일 단위로 통계 분석하는 2단계, 수집 및 분석한 기상자료를 웹으로 표출하는 3단계로 구성된다. DB에 수집된 기상자료는 웹 페이지를 통해, 전체 지점 또는 1개 지점의 1분단위, 10분단위, 1시간 단위, 1일 단위로 조회할 수 있으며, CSV 포맷으로 다운로드 할 수 있다. 자료 표출 시스템 접속 URL은 http://aws.agmet.kr 이다.
표준관측소의 점 단위 기온 관측 및 예보값을 농업분야에서 활용하기 위해서는 공간내삽이 필요한 경우가 많지만 기후학적 평년값 같은 장기간의 평균값 내삽과는 달리 지형효과를 반영하기 어려워 거리역산가중법이 수정 없이 사용되고 있다. 우리 나라처럼 지형이 복잡한 산악지역에서는 수평 거리에만 의존한 내삽 결과에 심각한 오류가 포함될 수 있으므로, 영농지원 정보로서 중요한 일 최저기온을 대상으로 추정오차의 최대근원인 해발고도의 영향을 보정 할 수 있는 간단한 공간내삽모형을 작성하였다. 먼저 남한 육지 상에 위치한 63개 표준관측소에서 수집된 일 최저기온자료와 관측소의 위치, 해안으로부터 거리, 경사향, 표고 등 국지기온 결정인자를 회귀분석 하여 표고에 따른 기온감율 추정식을 날짜의 함수로 표현하였다. 63개 관측점의 표고값을 공간내삽 하여 재구성한 전국의 가상 지형으로부터 1 km$\times$ 1 km 공간단위의 전국 수치고도값 편차를 계산하고, 여기에 해당 날짜의 기온감율을 적용하여 보정값을 계산한다. 기존의 거리역산가중법에 의한 기온추정값을 이 보정값에 의해 수정함으로써 최종 기온값을 얻는다. 임의로 선발된 1999년의 월별 하루씩 총 12일에 대하여 이 모형과 기존 거리역산가중법을 각기 적용하여 267개 자동기상관측지점의 일 최저기온을 추정한후 실측값과 비교하였다 오차평균, 절대오차평균, 그리고 평방근오차평균 등 세가지 추정오차를 분석한 결과 이 방법이 거리역산가중법에 비해 산악지역에서의 일 최저기온 추정에 있어 뚜렷한 개선효과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.