• Title/Summary/Keyword: AUTODYN numerical analysis

Search Result 52, Processing Time 0.02 seconds

Study on Blast Effects of Stemming Materials by Trauzl Lead Block Test and Numerical Analysis (트라우즐 연주시험과 수치해석에 의한 전색 매질별 발파효과 영향에 관한 연구)

  • Ko, Young-Hun;Kim, Seung-Jun;Baluch, Khaqan;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.35 no.4
    • /
    • pp.19-26
    • /
    • 2017
  • The most widely used method for determining the blast effects of explosives is the Trauzl lead block test. This test is used to measure the explosive power (strength) of a substance by determining volume increase, which is produced by the detonation of a test explosive charged in the cavity of a lead block with defined quantity and size. In this paper, Trazul lead block test and AUTODYN numerical analysis were conducted to evaluate the coupling medium effect of blast hole. The effects of coupling materials can be expressed as the expansion of the cavity in a standard lead block through explosion of the explosives. The tests were conducted with emulsion explosives. The coupling mediums used as the filling material around a explosive charge were air, sand, water and gelatine. Results of test and numerical analysis showed that expansion of lead block were much more affected by water&gel than by sand and air. The water and gel showed similar results. As expected, the transmitted pressure and dynamic strain was higher in water and gelatine coupled blast hole than in air and sand.

Study on Blast Effects of Decoupling Condition and Polymer Gel Coupling in Single Blast Hole by Numerical Analysis (디커플링 조건 및 폴리머 겔 적용에 따른 발파공 발파위력 영향에 관한 수치해석 연구)

  • Ko, Young-Hun;Jung, Seung-Won;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper, AUTODYN blasting simulation of single blast hole were conducted to evaluate the blasting effects of Polymer Gel. The coupling mediums used as the filling material around an explosive charge were air and gelatin. each simulation case was D I(decoupling index) 1.0, 1.25, 1.56 with air or polymer gel coupling materials. In order to evaluate blast effects full charge model was used as a reference for evaluation of blasting effects. The results of numerical analysis showed that fragmentation of a limestone model of were much more fractured by polymer gel medium than by air medium. As expected, the transmitted peak pressure was higher polymer gel coupled model than in air medium.

Assessment of Penetration Performance and Optimum Design of Shaped Charge Device for Underwater Steel Cutting (수중 강재절단을 위한 성형폭약 장치 최적설계 및 관입성능 평가)

  • Ko, Young-Hun;Kim, Seung-Jun;Kim, Jung-Gyu;Yang, Hyung-Sik;Kim, Hee-Do;Park, Hoon;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, several underwater steel cutting tests and AUTODYN numerical analyses were conducted to evaluate the penetration performance of a shaped charge device. Parameter analyses for the contribution rate were conducted by using the robust design method. The parameters adopted in this study were chamber type, stand-off, and wire setting, each of which had three levels in the analysis. Analysis results showed that the contribution rate was most affected by the stand-off, followed by the chamber type and wire setting. Experiments of underwater steel cutting were conducted at water depth of 25m. As expected, the experiments and numerical simulation showed similar results for underwater steel cutting performance, and thus the feasibility of the shaped charge device for underwater steel cutting at deep water depth was verified.

Evaluation of Blast Velocity by Artificial Joint Conditions using Numerical Analysis (수치해석을 이용한 인공절리 조건에 따른 발파속도 평가)

  • Suk, Chul-Gi;Noh, You-Song;Park, Hoon
    • Explosives and Blasting
    • /
    • v.35 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • This study undertakes an evaluation of blast effect through the analysis of the contribution rate and effect that different artificial joint number, artificial joint spacing and artificial joint angle have on blast velocity. Blast velocity according to the different state of the artificial joint was obtained using AUTODYN, a dynamic analysis program. The result of the numerical analysis was subjected to further normalization analysis. For the contribution rate of design factors was analyzed using the robust design method. The orthogonal array used in the analysis was $L_9(3^4)$ and each parameters were having 3 levels. The result of normalization analysis regarding the artificial joint angle was indicated a tendency in which blast velocity decreased. The result of analyzing blast velocity regarding artificial joint spacing and artificial joint angle was indicated a tendency in which blast velocity decreased as artificial joint spacing increased when the angle was perpendicular. In the case of blast velocity contribution rates they were ranked in the descending order of artificial joint angle, artificial joint number, artificial joint spacing.

Numerical Analysis of MDF for Aluminum Plate Cutting (MDF를 이용한 알루미늄 평판 절개 해석)

  • Lee, Juho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.134-141
    • /
    • 2018
  • In this paper, the possibility of using an MDF (Mild-detonating Fuse) as a linear separation device is studied. An MDF is a small diameter metal (lead) tube filled with explosives (RDX). Aluminum plate cutting experiments are carried out with different values of target plate thickness and explosives per unit length. Based on the experimental results, a numerical analysis method including the failure criteria is established. The mechanism and characteristics of using MDFs for aluminum plate cutting are identified; the possibility of using the current system as a linear separation device is verified. By utilizing a developed numerical method, the separation reliability for diverse structures and MDFs can be predicted in advance and the number of experiments required for development can be minimized.

The Study on the Performance Prediction of Precision Linear Shaped Charge Using Numerical Analysis Method (수치해석 기법을 이용한 정밀선상성형장약의 성능 예측에 관한 연구)

  • Lee, Sieun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.275-284
    • /
    • 2022
  • Linear Shaped Charge(LSC) is widely used as a separation system in the field of weapon system. However, there are some disadvantages that are charging lots of explosives due to lack of uniformity and having difficulties of the design of liner and explosives because of manufacturing process. In order to solve these problems, Precision Linear Shaped Charge(PLSC) that can design a liner independently and charge explosives uniformly has been developed. In this study, PLSC was designed to have a proper liner shape and amount of explosives, and the penetration test of PLSC with different stand-off distance from liner to target was conducted. On the basis of the penetration test results of PLSC, the numerical analysis method using AUTODYN was established and verified. The penetrative mechanism and characteristics of PLSC with targets of different materials was analyzed from experimental and numerical results.

Computational Analysis of Heracron Fabric at High-velocity Impact (Heracron 직물의 고속 충돌 해석)

  • Kim, YunHo;Choi, Chunghyeon;Kumar, Sarath Kumar Sathish;Cha, JiHun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.120-126
    • /
    • 2019
  • Advanced fiber fabrics have been utilized in not only anti-stabbing and bullet-proofing for body armor but also various industrial fields including vehicular armor and spacecraft structure. Furthermore, there have been a number of research to improve the ballistic performance of advanced fabrics introducing many computational approaches. In our research, an advanced fabric, Heracron manufactured in South Korea was modelled firstly using Autodyn, a commercial software specializing in impact and explosion phenomenon. The sensitivity of the input parameters was also confirmed by conducting simulations. To verify the numerical modelling, we measured and compared the simulation results with velocity decrements after impact involving one, three, and five layers of Heracron under 200-500 m/s impacts by an aluminum spherical projectile. The Heracron fabric was successfully modelled using Autodyn.

Numerical Study on the Effects of Air Decking in Half Charge Blasting Using AUTODYN (AUTODYN을 이용한 하프장전 발파공법의 에어데크 효과에 대한 수치해석적 연구)

  • Baluch, Khaqan;Kim, Jung-Kyu;Kim, Seung-Jun;Jin, Guochen;Jung, Seung-Won;Yang, Hyung-Sik;Kim, Nam-Soo;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • This numerical study was intended to evaluate the applicability of the half charge blasting to mining and tunnelling. The half charge blasting is a method that two separate rounds are sequentially blasted for the rock burdens in which long blast holes have already been drilled at one operation. The aim of the method is to decrease the construction cost and period in mining and tunnelling projects as well as to increase the blasting efficiency. Several numerical analyses were conducted by using the Euler-Lagrange solver on ANSYS AUTODYN to identify the effects of the suggested method on the blasting results in underground excavations. The overall performance of the suggested method was also compared to an ordinary blasting method. The analysis model was comprised of the Eulerian parts (explosive, air, and stemming materials) and the Lagrangian parts (rock material). As a result, it was found that, owing to the air decks formed in the bottom parts of the long blast holes, the first round of the suggested method presented a higher shock pressure and particle velocities in the vicinity of the blast holes compared to the ordinary blasting method.

Oblique Impact Analysis of Long Rod Penetrator against Metallic Plate using NET3D (NET3D를 이용한 긴 관통자와 금속 판재의 경사충돌 해석)

  • 유요한
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.228-238
    • /
    • 2002
  • Using the dynamic explicit program NET3D, oblique impact between long rod penetrator and metallic plate was analyzed. Compared with an experiment and AUTODYN-3D analysis result, the accuracy of NET3D program was examined. It was proved that NET3D program could analyze comparatively exactly oblique impact phenomenon between long rod penetrator and metallic plate. The final deformed configuration of penetrator predicted by NET3D program was more close to experimental result than commercial program AUTODYN-3D. But, in order to increase the reliability of NET3D program in the simulation of tensile fracture phenomenon, the additional research is required.

Characteristics of crater formation due to explosives blasting in rock mass

  • Jeon, Seokwon;Kim, Tae-Hyun;You, Kwang-Ho
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.329-344
    • /
    • 2015
  • Cratering tests in rock are generally carried out to identify its fragmentation characteristics. The test results can be used to estimate the minimum amount of explosives required for the target volume of rock fragmentation. However, it is not easy to perform this type of test due to its high cost and difficulty in securing the test site with the same ground conditions as the site where blasting is to be performed. Consequently, this study investigates the characteristics of rock fragmentation by using the hydrocode in the platform of AUTODYN. The effectiveness of the numerical models adopted are validated against several cratering test results available in the literature, and the effects of rock mass classification and ground formation on crater size are examined. The numerical analysis shows that the dimension of a crater is increased with a decrease in rock quality, and the formation of a crater is highly dependent on a rock of lowest quality in the case of mixed ground. It is expected that the results of the present study can also be applied to the estimation of the level and extent of the damage induced by blasting in concrete structures.