• Title/Summary/Keyword: AUTODYN SPH

Search Result 5, Processing Time 0.014 seconds

A numerical study on rock cutting by a TBM disc cutter using SPH code (SPH 코드를 사용한 TBM 디스크커터의 암석 절삭에 대한 수치해석적 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.345-356
    • /
    • 2013
  • Numerical simulation on rock cutting by a TBM disc cutter was carried out using SPH (Smoothed Particle Hydrodynamics) code. AUTODYN3D, a commercial software program based on finite element method, was used in this study. The three-dimensional geometry of a disc cutter and a rock specimen were modeled by Lagrange and SPH code respectively. The numerical simulation was carried out for Hwangdeung granite for 10 different cutting conditions. The results of the numerical simulation, i.e. the relation between cutter force and failure behavior, had a good agreement with those from LCM test. The cutter forces measured in the numerical simulation had 10% deviation from the LCM test results. Moreover, the optimum cutter spacing was almost identical with the experimental results. These results indicate that SPH code can be successfully used had applicability for simulation on rock cutting by a TBM disc cutter. However, further study on Lagrange-SPH coupled modelling would be necessary to reduce the computation time.

Study on the Computational Simulation of Large Scale Gap Test (Large Scale Gap 시험의 전산모사연구)

  • Lee, Jin-Sung;Park, Jung-Su;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.932-940
    • /
    • 2011
  • This study describes computational simulation results in 2-dimensional and 3-dimensional space concerning large scale gap test(LSGT) by using commercial hydrocode such as AUTODYN and LS-DYNA to analyze the detonation phenomenons of high explosives. To consider the possibilities of LSGT simulation, we used Lee - Tarver reaction rate model of PBX-9404 and Comp-B which were implemented AUTODYN's material library. Also we have tried the diverse numerical schemes such as Lagrangian, Eulerian and ALE(Arbitary Lagrangian Eulerian), SPH(Smoothed Particle Hydrodynamics) in LSGT simulations. After LSGT simulations, we compared the simulation results with published results to verify the LSGT simulations. According to the LSGT simulations, we have concluded as follows. In 2-dimensional and 3-dimensional space, Lagrangian solver provided the most reliable results based on analysis time and accuracy. When using two hydrocodes in 2-dimensional space, the simulation results are almost same except one explosive model. We have verified the modeling method and simulation results of the LSGT by using the commenrcial hydrocode in this study.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.

A Study on the technique of impact analysis against concrete target using Lagrangian and Smoothed Particle Hydrodynamics (라그란지안 기법과 입자완화동력학 기법을 이용한 콘크리트 표적 충돌해석 기법 연구)

  • 하동호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.207-216
    • /
    • 2002
  • In this paper, the study on the behavior of the deformation of brittle material, such as concrete, ceramic, was peformed by comparison of Lagrangian technique and Smoothed Particle Hydrodynamics using commercial nonlinear hydrodynamic numerical program, Autodyn_2D. The effect of SPH technique was proved by investigating the behavior of material deformation, velocity profile and pressure profile.

Numerical Analysis of Steel-strengthened Concrete Panels Exposed to Effects of Blast Wave and Fragment Impact Load Using Multi-solver Coupling (폭풍파 및 파편 충돌에 대한 강판보강 콘크리트 패널의 복합적 수치해석)

  • Yun, Sung-Hwan;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.25-33
    • /
    • 2011
  • The impact damage behavior of steel-strengthened concrete panels exposed to explosive loading is investigated. Since real explosion experiments require the vast costs to facilities as well as the blast and impact damage mechanisms are too complicated, numerical analysis has lately become a subject of special attention. However, for engineering problems involving blast wave and fragment impact, there is no single numerical method that is appropriate to the various problems. In order to evaluate the retrofit performance of a steel-strengthened concrete panel subject to blast wave and fragment impact loading, an explicit analysis program, AUTODYN is used in this work. The multi-solver coupling methods such as Euler-Lagrange and SPH-Lagrange coupling method in order to improve efficiency and accuracy of numerical analysis is implemented. The simplified and idealized two dimensional and axisymmetric models are used in order to obtain a reasonable computation running time. As a result of the analysis, concrete panels subject to either blast wave or fragment impact loading without the steel plate are shown the scabbing and perforation. The perforation can be prevented by concrete panels reinforced with steel plate. The numerical results show good agreement with the results of the experiments.