Communications for Statistical Applications and Methods
/
제31권2호
/
pp.203-212
/
2024
The area under the ROC curve (AUC) is one of the most common criteria used to measure the overall performance of binary classifiers for a wide range of machine learning problems. In this article, we propose a L1-penalized AUC-optimization classifier that directly maximizes the AUC for high-dimensional data. Toward this, we employ the AUC-consistent surrogate loss function and combine the L1-norm penalty which enables us to estimate coefficients and select informative variables simultaneously. In addition, we develop an efficient optimization algorithm by adopting k-means clustering and proximal gradient descent which enjoys computational advantages to obtain solutions for the proposed method. Numerical simulation studies demonstrate that the proposed method shows promising performance in terms of prediction accuracy, variable selectivity, and computational costs.
Wiharto;Yaumi A. Z. A. Fajri;Esti Suryani;Sigit Setyawan
Journal of information and communication convergence engineering
/
제21권2호
/
pp.130-138
/
2023
The selection of the correct examination variables for diagnosing heart disease provides many benefits, including faster diagnosis and lower cost of examination. The selection of inspection variables can be performed by referring to the data of previous examination results so that future investigations can be carried out by referring to these selected variables. This paper proposes a model for selecting examination variables using an Artificial Bee Swarm Optimization method by considering the variables of accuracy and cost of inspection. The proposed feature selection model was evaluated using the performance parameters of accuracy, area under curve (AUC), number of variables, and inspection cost. The test results show that the proposed model can produce 24 examination variables and provide 95.16% accuracy and 97.61% AUC. These results indicate a significant decrease in the number of inspection variables and inspection costs while maintaining performance in the excellent category.
Journal of the Korean Data and Information Science Society
/
제26권6호
/
pp.1305-1315
/
2015
ROC 곡선을 구성하는 한 개의 스코어 변수로 이루어진 분류모형을 확장하여 선형 스코어의 함수인 리스크 스코어를 고려하고, 선형 스코어의 계수를 추정하기 위한 방법으로 AUC를 최대화하는 방법을 사용한다. 이런 AUC 접근방법으로 구한 스코어의 계수 추정량은 로지스틱모형을 이용한 선형 스코어의 모수의 최대가능도 추정량보다 자료가 로지스틱 가정이 맞지 않는 일반적인 상황에서도 좋은 추정 결과를 보인다. 본 연구에서는 다항범주로 분류되어 현실적인 판별 및 예측 상황을 고려하여 AUC 접근방법을 확장한 VUS와 HUM 접근방법을 제안한다. 연결함수로는 로짓, complementary log-log와 로짓을 변형한 함수의 세 종류와 그리고 다양한 분류점의 분포인 경우에 대하여도 모의실험을 실시하였다. 본 논문에서는 다항범주 판별결과에 대하여 VUS와 HUM 접근방법도 AUC 접근방법과 유사하게 다양한 연결함수에 대하여 로지스틱모형 추정방법보다 동등하거나 더 나은 모수추정 결과를 보이는 것을 확인하였다.
화장품의 사용감을 관계 있는 물성의 측정을 통해 정량화하려는 시도가 이어져오고 있다. 그 중 끈적임은 texture ananlyzer를 이용하여 수직 힘을 측정하는 방식이 대표적이며, 시간에 따른 수직 힘의 그래프에서 음의 면적인 area under curve (AUC)와 상관관계를 갖는 것으로 알려져 있다. 최근 노르망디 대학에서는 이러한 특성에 피부의 특성을 함께 고려하여 TA를 이용한 in vivo 끈적임 평가법을 개발하였다[8]. 본 연구에서는 이를 확장하여 화장품 크림의 in vivo 끈적임 평가법을 최적화하고자 하였다. 페이셜 크림 5 종을 대상으로 크림의 도포량 및 도포 횟수, 탐침의 모양과 소재를 바꾸어 보면서 실험을 진행하였고, 관능 평가 결과를 기준으로 가장 부합하는 조건을 최적의 평가법으로 설정하였다. 그 결과, 3.4 cm의 원 내부에 70 μL의 크림을 7 s 동안 10 회 문지르고 측정하는 방식이 가장 적합한 것으로 판단되었다. 탐침의 경우, 원기둥형보다 구형의 탐침이 재현성이 높게 나타나 구형의 금속 탐침을 택하였다. 최적의 평가법을 확보하여 10 인의 피험자를 대상으로 인체 평가를 진행한 결과, 사람에 따른 절대값에는 차이가 있으나 AUC의 순위는 모두 같게 얻어졌다. 마지막으로 AUC의 끈적임 표준화의 시도로 PVP를 표준 물질로 설정하여 농도 별로 AUC를 측정하고, 5종의 크림 별 끈적임 인지율을 확인하여 AUC와 끈적임의 상관관계에 대해 알아보았다.
This study explored the usefulness and implications of the Bayesian hyperparameter optimization in developing species distribution models (SDMs). A variety of machine learning (ML) algorithms, namely, support vector machine (SVM), random forest (RF), boosted regression tree (BRT), XGBoost (XGB), and Multilayer perceptron (MLP) were used for predicting the occurrence of four benthic macroinvertebrate species. The Bayesian optimization method successfully tuned model hyperparameters, with all ML models resulting an area under the curve (AUC) > 0.7. Also, hyperparameter search ranges that generally clustered around the optimal values suggest the efficiency of the Bayesian optimization in finding optimal sets of hyperparameters. Tree based ensemble algorithms (BRT, RF, and XGB) tended to show higher performances than SVM and MLP. Important hyperparameters and optimal values differed by species and ML model, indicating the necessity of hyperparameter tuning for improving individual model performances. The optimization results demonstrate that for all macroinvertebrate species SVM and RF required fewer numbers of trials until obtaining optimal hyperparameter sets, leading to reduced computational cost compared to other ML algorithms. The results of this study suggest that the Bayesian optimization is an efficient method for hyperparameter optimization of machine learning algorithms.
International Journal of Fuzzy Logic and Intelligent Systems
/
제5권3호
/
pp.263-267
/
2005
Building classifiers for financial real-world classification problems is often plagued by severely overlapping and highly skewed class distribution. New performance measures such as receiver operating characteristic (ROC) curve and area under ROC curve (AUC) have been recently introduced in evaluating and building classifiers for those kind of problems. They are, however, in-effective to evaluation of classifier's discrimination performance in a particular class of the classification problems that interests lie in only a local operating range of the classifier, In this paper, a new method is proposed that enables us to directly improve classifier's discrimination performance at a desired local operating range by defining and optimizing a partial area under ROC curve or domain-specific curve, which is difficult to achieve with conventional classification accuracy based learning methods. The effectiveness of the proposed approach is demonstrated in terms of fraud detection capability in a real-world fraud detection problem compared with the MSE-based approach.
감성분석 연구에서는 문장에 내포된 감성을 결정짓는 단어를 찾는 것으로부터 시작된다. 경영자는 소비자가 주로 사용하는 단어를 분석함으로써 시장의 반응을 이해할 수 있다. 본 연구에서는 감성분류의 성능에 영향을 미치는 단어를 찾기 위하여 입자군집최적화 탐색방법과 다목적진화 알고리즘이 적용된 속성선택 방법을 제안한다. 속성선택 방법은 기존 머신러닝 분류기를 벤치마킹함으로써 성능이 비교된다. 벤치마킹된 분류기는 의사결정나무, 나이브 베이지안 네트워크, 서포터 벡터 머신, 랜덤포레스트, 배깅, 랜덤 서브스페이스, 로테이션 포레스트이다. 연구결과에 따르면, 입자군집 최적화 알고리즘이 적용된 속성선택방법으로 선택된 속성을 사용한 경우에 속성의 수를 상당히 줄일 수 있었고, 분류기의 성능을 유지시킬 수 있었다. 특히, 정확도 결과에서는 입자군집 최적화 탐색방법으로 선택된 속성을 사용한 경우의 서포터 벡터 머신의 성능이 가장 높게 나타났다. AUC 결과에서는 랜덤 서브스페이스가 가장 높게 나타났다. 본 연구의 결과는 해당 탐색방법과 분류기를 적용함으로써 오피니언 마이닝 모델의 성능을 효율적으로 유지 및 개선시키도록 도움을 준다.
대형 산림화재를 예방하기 위해 산림화재의 조기발견은 매우 중요하다. 조기발견을 위한 하나의 방안으로 산림화재 발생 예측이 고려되고 있으며 다양한 관련 연구가 진행되었다. 그러나 대다수의 선행연구가 산림화재의 주요 발화 원인 중의 하나인 인적요인을 고려하지 않고 기상요인과 지리적 요인만을 주로 다루고 있다. 따라서 본 연구는 기상 및 지리적 요인뿐만 아니라 인적요인을 고려한 산림화재 예측모형을 개발하기 위해 2003년부터 2020년까지의 강원도 산림화재 데이터를 활용하여 로지스틱 회귀모형과 다양한 머신러닝 기법 기반의 예측모형을 개발하고 성능을 비교분석하였다. 성능분석 결과, 머신러닝 기법인 랜덤 포레스트(AUC=0.920)와 XG Boost 모형(AUC=0.925)이 가장 우수한 성능을 나타냈다. 운영시사점을 도출하기 위해 순열특성중요도 분석을 활용하여 요인들의 상대적 중요도를 분석하였으며, 기상요인이 인적요인보다 높은 영향도를 나타냈지만 다양한 인적요인도 유효한 것으로 확인되었다.
In order to reduce gastric irritation in the stomach of iron preparations, ferroglycine fumarate (FGF) granules coated with hydroxyethylcellulose was made by matrix granulator, and the constrained optimization method, employing the Lagrange equation, was successfully applied to the manufacturing process design of controlled release tablets. The effects of stearic acid and dried corn starch on tablet hardness, friability, dissolution rate $t_{50%}$ and tablet volume were found to be very significant. In rabbit test, pharmacokinetic parameters $(K_a,\;C_{max}\;and\;AUC^{0-12})$ and urinary excretion rate $(K_e)$ of the controlled release FGF tablets were higher than those of controlled release ferroglycine sulfate tablets which were manufactured in the same optimal conditions. Controlled release FGF tablets were more stable than controlled release ferroglycine sulfate tablets in accelerated storage conditions.
We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.