• 제목/요약/키워드: AUC-optimization

검색결과 19건 처리시간 0.03초

L1-penalized AUC-optimization with a surrogate loss

  • Hyungwoo Kim;Seung Jun Shin
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.203-212
    • /
    • 2024
  • The area under the ROC curve (AUC) is one of the most common criteria used to measure the overall performance of binary classifiers for a wide range of machine learning problems. In this article, we propose a L1-penalized AUC-optimization classifier that directly maximizes the AUC for high-dimensional data. Toward this, we employ the AUC-consistent surrogate loss function and combine the L1-norm penalty which enables us to estimate coefficients and select informative variables simultaneously. In addition, we develop an efficient optimization algorithm by adopting k-means clustering and proximal gradient descent which enjoys computational advantages to obtain solutions for the proposed method. Numerical simulation studies demonstrate that the proposed method shows promising performance in terms of prediction accuracy, variable selectivity, and computational costs.

Use of Artificial Bee Swarm Optimization (ABSO) for Feature Selection in System Diagnosis for Coronary Heart Disease

  • Wiharto;Yaumi A. Z. A. Fajri;Esti Suryani;Sigit Setyawan
    • Journal of information and communication convergence engineering
    • /
    • 제21권2호
    • /
    • pp.130-138
    • /
    • 2023
  • The selection of the correct examination variables for diagnosing heart disease provides many benefits, including faster diagnosis and lower cost of examination. The selection of inspection variables can be performed by referring to the data of previous examination results so that future investigations can be carried out by referring to these selected variables. This paper proposes a model for selecting examination variables using an Artificial Bee Swarm Optimization method by considering the variables of accuracy and cost of inspection. The proposed feature selection model was evaluated using the performance parameters of accuracy, area under curve (AUC), number of variables, and inspection cost. The test results show that the proposed model can produce 24 examination variables and provide 95.16% accuracy and 97.61% AUC. These results indicate a significant decrease in the number of inspection variables and inspection costs while maintaining performance in the excellent category.

VUS와 HUM 최적화를 이용한 선형함수의 모수추정 (Parameter estimation of linear function using VUS and HUM maximization)

  • 홍종선;원치환;정동길
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1305-1315
    • /
    • 2015
  • ROC 곡선을 구성하는 한 개의 스코어 변수로 이루어진 분류모형을 확장하여 선형 스코어의 함수인 리스크 스코어를 고려하고, 선형 스코어의 계수를 추정하기 위한 방법으로 AUC를 최대화하는 방법을 사용한다. 이런 AUC 접근방법으로 구한 스코어의 계수 추정량은 로지스틱모형을 이용한 선형 스코어의 모수의 최대가능도 추정량보다 자료가 로지스틱 가정이 맞지 않는 일반적인 상황에서도 좋은 추정 결과를 보인다. 본 연구에서는 다항범주로 분류되어 현실적인 판별 및 예측 상황을 고려하여 AUC 접근방법을 확장한 VUS와 HUM 접근방법을 제안한다. 연결함수로는 로짓, complementary log-log와 로짓을 변형한 함수의 세 종류와 그리고 다양한 분류점의 분포인 경우에 대하여도 모의실험을 실시하였다. 본 논문에서는 다항범주 판별결과에 대하여 VUS와 HUM 접근방법도 AUC 접근방법과 유사하게 다양한 연결함수에 대하여 로지스틱모형 추정방법보다 동등하거나 더 나은 모수추정 결과를 보이는 것을 확인하였다.

Texture Analyzer (TA)를 이용한 화장품 크림의 In Vivo 끈적임 평가법의 최적화 (Optimization of In Vivo Stickiness Evaluation for Cosmetic Creams Using Texture Analyzer)

  • 류주연;배정은;강내규
    • 대한화장품학회지
    • /
    • 제46권4호
    • /
    • pp.371-382
    • /
    • 2020
  • 화장품의 사용감을 관계 있는 물성의 측정을 통해 정량화하려는 시도가 이어져오고 있다. 그 중 끈적임은 texture ananlyzer를 이용하여 수직 힘을 측정하는 방식이 대표적이며, 시간에 따른 수직 힘의 그래프에서 음의 면적인 area under curve (AUC)와 상관관계를 갖는 것으로 알려져 있다. 최근 노르망디 대학에서는 이러한 특성에 피부의 특성을 함께 고려하여 TA를 이용한 in vivo 끈적임 평가법을 개발하였다[8]. 본 연구에서는 이를 확장하여 화장품 크림의 in vivo 끈적임 평가법을 최적화하고자 하였다. 페이셜 크림 5 종을 대상으로 크림의 도포량 및 도포 횟수, 탐침의 모양과 소재를 바꾸어 보면서 실험을 진행하였고, 관능 평가 결과를 기준으로 가장 부합하는 조건을 최적의 평가법으로 설정하였다. 그 결과, 3.4 cm의 원 내부에 70 μL의 크림을 7 s 동안 10 회 문지르고 측정하는 방식이 가장 적합한 것으로 판단되었다. 탐침의 경우, 원기둥형보다 구형의 탐침이 재현성이 높게 나타나 구형의 금속 탐침을 택하였다. 최적의 평가법을 확보하여 10 인의 피험자를 대상으로 인체 평가를 진행한 결과, 사람에 따른 절대값에는 차이가 있으나 AUC의 순위는 모두 같게 얻어졌다. 마지막으로 AUC의 끈적임 표준화의 시도로 PVP를 표준 물질로 설정하여 농도 별로 AUC를 측정하고, 5종의 크림 별 끈적임 인지율을 확인하여 AUC와 끈적임의 상관관계에 대해 알아보았다.

베이지안 최적화를 통한 저서성 대형무척추동물 종분포모델 개발 (Development of benthic macroinvertebrate species distribution models using the Bayesian optimization)

  • 고병건;신지훈;차윤경
    • 상하수도학회지
    • /
    • 제35권4호
    • /
    • pp.259-275
    • /
    • 2021
  • This study explored the usefulness and implications of the Bayesian hyperparameter optimization in developing species distribution models (SDMs). A variety of machine learning (ML) algorithms, namely, support vector machine (SVM), random forest (RF), boosted regression tree (BRT), XGBoost (XGB), and Multilayer perceptron (MLP) were used for predicting the occurrence of four benthic macroinvertebrate species. The Bayesian optimization method successfully tuned model hyperparameters, with all ML models resulting an area under the curve (AUC) > 0.7. Also, hyperparameter search ranges that generally clustered around the optimal values suggest the efficiency of the Bayesian optimization in finding optimal sets of hyperparameters. Tree based ensemble algorithms (BRT, RF, and XGB) tended to show higher performances than SVM and MLP. Important hyperparameters and optimal values differed by species and ML model, indicating the necessity of hyperparameter tuning for improving individual model performances. The optimization results demonstrate that for all macroinvertebrate species SVM and RF required fewer numbers of trials until obtaining optimal hyperparameter sets, leading to reduced computational cost compared to other ML algorithms. The results of this study suggest that the Bayesian optimization is an efficient method for hyperparameter optimization of machine learning algorithms.

Optimization of Classifier Performance at Local Operating Range: A Case Study in Fraud Detection

  • Park Lae-Jeong;Moon Jung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권3호
    • /
    • pp.263-267
    • /
    • 2005
  • Building classifiers for financial real-world classification problems is often plagued by severely overlapping and highly skewed class distribution. New performance measures such as receiver operating characteristic (ROC) curve and area under ROC curve (AUC) have been recently introduced in evaluating and building classifiers for those kind of problems. They are, however, in-effective to evaluation of classifier's discrimination performance in a particular class of the classification problems that interests lie in only a local operating range of the classifier, In this paper, a new method is proposed that enables us to directly improve classifier's discrimination performance at a desired local operating range by defining and optimizing a partial area under ROC curve or domain-specific curve, which is difficult to achieve with conventional classification accuracy based learning methods. The effectiveness of the proposed approach is demonstrated in terms of fraud detection capability in a real-world fraud detection problem compared with the MSE-based approach.

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권11호
    • /
    • pp.41-50
    • /
    • 2020
  • 감성분석 연구에서는 문장에 내포된 감성을 결정짓는 단어를 찾는 것으로부터 시작된다. 경영자는 소비자가 주로 사용하는 단어를 분석함으로써 시장의 반응을 이해할 수 있다. 본 연구에서는 감성분류의 성능에 영향을 미치는 단어를 찾기 위하여 입자군집최적화 탐색방법과 다목적진화 알고리즘이 적용된 속성선택 방법을 제안한다. 속성선택 방법은 기존 머신러닝 분류기를 벤치마킹함으로써 성능이 비교된다. 벤치마킹된 분류기는 의사결정나무, 나이브 베이지안 네트워크, 서포터 벡터 머신, 랜덤포레스트, 배깅, 랜덤 서브스페이스, 로테이션 포레스트이다. 연구결과에 따르면, 입자군집 최적화 알고리즘이 적용된 속성선택방법으로 선택된 속성을 사용한 경우에 속성의 수를 상당히 줄일 수 있었고, 분류기의 성능을 유지시킬 수 있었다. 특히, 정확도 결과에서는 입자군집 최적화 탐색방법으로 선택된 속성을 사용한 경우의 서포터 벡터 머신의 성능이 가장 높게 나타났다. AUC 결과에서는 랜덤 서브스페이스가 가장 높게 나타났다. 본 연구의 결과는 해당 탐색방법과 분류기를 적용함으로써 오피니언 마이닝 모델의 성능을 효율적으로 유지 및 개선시키도록 도움을 준다.

인적요인을 고려한 머신러닝 활용 산림화재 예측 (Predicting Forest Fires Using Machine Learning Considering Human Factors)

  • 장진명;김주찬;김화중;김광태
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.109-126
    • /
    • 2023
  • 대형 산림화재를 예방하기 위해 산림화재의 조기발견은 매우 중요하다. 조기발견을 위한 하나의 방안으로 산림화재 발생 예측이 고려되고 있으며 다양한 관련 연구가 진행되었다. 그러나 대다수의 선행연구가 산림화재의 주요 발화 원인 중의 하나인 인적요인을 고려하지 않고 기상요인과 지리적 요인만을 주로 다루고 있다. 따라서 본 연구는 기상 및 지리적 요인뿐만 아니라 인적요인을 고려한 산림화재 예측모형을 개발하기 위해 2003년부터 2020년까지의 강원도 산림화재 데이터를 활용하여 로지스틱 회귀모형과 다양한 머신러닝 기법 기반의 예측모형을 개발하고 성능을 비교분석하였다. 성능분석 결과, 머신러닝 기법인 랜덤 포레스트(AUC=0.920)와 XG Boost 모형(AUC=0.925)이 가장 우수한 성능을 나타냈다. 운영시사점을 도출하기 위해 순열특성중요도 분석을 활용하여 요인들의 상대적 중요도를 분석하였으며, 기상요인이 인적요인보다 높은 영향도를 나타냈지만 다양한 인적요인도 유효한 것으로 확인되었다.

푸마르산철글리신 복합체의 약제학적 연구 (제2보) -지속성 푸마르산철글리신 정제의 최적화에 관한 연구- (Pharmaceutical Studies on Ferroglycine Fumarate (II) -Studies on Optimization of Controlled Release Ferroglycine Fumarate Tablets-)

  • 신현종;이완하
    • Journal of Pharmaceutical Investigation
    • /
    • 제17권3호
    • /
    • pp.101-110
    • /
    • 1987
  • In order to reduce gastric irritation in the stomach of iron preparations, ferroglycine fumarate (FGF) granules coated with hydroxyethylcellulose was made by matrix granulator, and the constrained optimization method, employing the Lagrange equation, was successfully applied to the manufacturing process design of controlled release tablets. The effects of stearic acid and dried corn starch on tablet hardness, friability, dissolution rate $t_{50%}$ and tablet volume were found to be very significant. In rabbit test, pharmacokinetic parameters $(K_a,\;C_{max}\;and\;AUC^{0-12})$ and urinary excretion rate $(K_e)$ of the controlled release FGF tablets were higher than those of controlled release ferroglycine sulfate tablets which were manufactured in the same optimal conditions. Controlled release FGF tablets were more stable than controlled release ferroglycine sulfate tablets in accelerated storage conditions.

  • PDF

안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 2. 계절별 최적화 및 사례 분석 (Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 2. Seasonal Optimization and Case Studies)

  • 박이준;김정훈
    • 대기
    • /
    • 제33권5호
    • /
    • pp.531-548
    • /
    • 2023
  • We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.