• Title/Summary/Keyword: ATmega128A

Search Result 127, Processing Time 0.027 seconds

One Board Controller Design with ATmega 128 Chip for Manetic Levitation System (ATmega 128 소자를 이용한 자기부상계 제어용 원-보드 컨트롤러의 설계)

  • Choung, K.G.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • Magnetic levitation system is nonlinear and inherently unstable, so it is difficult to control. Analog control circuit was widly used as the controller of magnetic levitation system, but digital controller is now substituted for analog controller according to development of digital electronics. In this study, Atmel AVR series, ATmega 128 which is a kind of $\mu$-processor for digital controller is used because the chip is cheap and popular. We designed and made ATmega 128 one-board controller and aimed to verify validity through the experiance of levitation response.

ATmega128를 이용한 LED 조명 제어보드 구성

  • Jang, Young-Ho;Kim, Hwan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.440-443
    • /
    • 2011
  • This paper aims to compose a new LED lighting control board in the LED lighting environment This LED lighting control board is designed to adjust the brightness of LED lighting depending on the change of surrounding brightness, and it is also designed to control the brightness by using ATmega128, which is an 8bit micro-controller, The PWM wave form likely to output into the LED driver is determined by the ADC value input through ADC.

  • PDF

Implementation of ATmega128 based Short Message Transmission Protocol IMCP (ATmega128 기반 단문 메시지 전송 프로토콜 IMCP 구현)

  • Kim, Jeom Go
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.3-11
    • /
    • 2020
  • The social networking service (SNS) is free, but the data usage fee paid to the telecommunications company and the member's information must be provided directly or indirectly. In addition, while SNS' specifications for transmitting and receiving devices such as smart-phones and PCs are increasing day by day, using universal transmission protocols in special environments such as contaminated areas or semiconductor manufacturing plants where work instructions are mainly made using short messages is not easy. It is not free and has a problem of weak security. This paper verified the practicality through the operation test by implementing IMCP, a low-power, low-cost message transmission protocol that aims to be wearable in special environments such as risk, pollution, and clean zone based on ATmega128.

A study of Water Level Control System (수위관리 시스템 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.504-508
    • /
    • 2010
  • A reducing labor is a big issue in rural community due to a increasingly aging society. In this paper, the water control system for corps production with a function of automatically controls and solar energy system is developed. The water level was measured by ultrasonic sensor and water gate was controlled by using servo motor. The system had included ATmega 128 control unit for signal controls. The water level control system will be able to contribute to the aging rural society.

Speed Control of Smart Electric Fan using ATmega128 Microcontroller (ATmega128 마이크로 컨트롤러를 사용한 스마트 선풍기 속도제어)

  • Won, Jae-Hyuk;Kim, Jung-Woon;Lee, Song-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.281-283
    • /
    • 2009
  • This paper presents the smart fan which is operated by a small conventional motor and an ultrasonic sensor. The smart fan generates cool wind with regulated speed of wing by the distance between the user and the fan. In this research, an 8-bit microcontroller (ATmega128) and an ultrasonic sensor (NT-TS601) are utilized for the system control and sensing information. In order to obtain the speed information from the encoderless DC motor, a stroboscope is used, which provides the voltage variation by the motor speed. The proposed smart fan makes the user feel cool, convenient and safe at a low cost.

  • PDF

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Control of Magnetic Bearing using ATmega128(Focused on experiments) (ATmega128 소자를 이용한 자기베어링 제어(실험을 중심으로))

  • Yang, Joo-Ho;Choi, Gyo-Ho;Choung, Kwang-Gyo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.139-146
    • /
    • 2013
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration, it is very useful to high revolution machinery. In this paper we selected ATmega 128, a less expensive and widely used micro controller, for control the magnetic bearing system. And we selected the sampling time and the control gain of PID controller through trial-and-error. The control program of the one board controller utilized lookup table to reduce calculation time, and bit shifting for the integer calculation in instead of floating point calculation. As the results, the controller carried out relatively high speed PID control on sampling time 0.25 ms. At last the rotation test for the magnetic bearing system was carried out by 3 phase induction motor and air turbine.

Input System for effcient working process result using ATmega128 (ATmega128을 이용한 효율적인 작업공정 처리결과 입력 시스템)

  • Jung, Jae-Hun;Jeong, Do-Wook;Han, Hyeong-Cheol;Cha, Jeong-Un;Kim, Young-Gon
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.928-931
    • /
    • 2013
  • 본 논문에서는 산업공장 내의 생산효율을 높이기 위하여 작업에 대한 지시를 효율적으로 이행하는 시스템을 개발하려고 한다. 모든 공장에서는 자동화와 더불어 안전하고 생산성 높은 시스템을 추구한다. 하지만 대부분의 공장에서는 작업공정이 비체계적이며, 자동화가 이루어지지 않는 실정이다. 제조 공장의 급격한 성장으로 인하여 다양하고 많은 제품이 동시 다발적으로 생산되는 상황에서 적기 생산과 완성도 높은 제품을 위한 작업 제어 관리가 필요한 시점으로 작업에 관련된 데이터를 재정리하는 과정이 필요하다. 이러한 문제를 해결하기 위해서는 작업공정 전체를 시스템으로 포착하여 각 설비(요소)의 안전 및 생산성 향상을 도모하여야 하며, 작업공정 처리 결과를 입력하여 제어할 수 있는 ATmega보드를 모듈화 해야한다. 본 논문은 입력장치 모듈과 ATmega128, WIFI 모듈을 접목하여 작업공정 데이터를 실시간으로 입력하는 작업공정 입력 시스템을 개발하였다. 이로 인하여 현 제조 공장 생산업무의 작업효율을 크게 향상시키고, 경영 개선에 이바지 하고자 한다.

Implementation of a drone using the PID control of an 8-bit microcontroller (8bit 마이크로컨트롤러의 PID제어를 이용한 드론 구현)

  • Lee, Donghee;Moon, Sangook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.9
    • /
    • pp.81-90
    • /
    • 2016
  • Recently drones have become popular enough to be one of the hobby. The drone refers to an unmanned aerial vehicle which can fly and be steered by a radio wave without a pilot and it has a airplane or helicopter shape. The drone was first started to be used from military purpose, but its usage has been expanded to the private such as construction site, crop-dusting, field discovery, freight shipping and drones to prevent cheating. However the drone that we can see often in the market is expansive, hard to be repaired when it broken down and has a discomfort of the short flight time. In this paper, to solve an uncomfortable talk on the cheap 8-bits microcontrollers ATmega128 Using drone for implementation. Axes gyroscope and accelerometers mcu between posture an attitude control, communications through drone control, pid. Receiver input them into transmitter signals of movements to control drone c the programming was implemented in on the basis of language. drone using ATmega128 microcontroller is possible hovering, By utilizing a pin that are not required for control it can be used as a drone for a variety of uses.

Control on Wind Speed and Direction of Electric Fan using A.I Fan Sensor (A.I Fan 센서를 이용한 선풍기의 풍향 및 풍속 조절)

  • Kwon, Young-Geun;Choi, Sae-Hoon;Han, Young-Sam;Kim, Myoung-Jin;Park, Chae-Seo;Hur, Joon;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.81
    • /
    • pp.7-19
    • /
    • 2007
  • 본 논문은 초음파센서와 적외선센서를 이용하여 그 신호를 받아 주 모터를 제어한 것으로, 센서를 이용한 선풍기의 풍향 및 풍속을 제어하였다. 풍향제어는 인체감지센서와 ATmega128, DC모터를 사용하였고, 기본적으로 WmAVR과 PonyProg를 사용하여 소스코딩 및 다운로딩을 하였으며, 모터 구동드라이버는 모터제어에 범용으로 쓰이는 L298 칩을 사용하였다. 풍속제어는 초음파센서와 ATmeBa16, DC모터를 사용하여 제작하였고, 풍향제어부와 마찬가지로 WinAVR과 PonyProg 및 L298 칩을 사용하여 소스코딩 및 다운로딩을 하였다. 풍향제어는 물체가 정면에 위치하면 회전을 멈추고, 좌우로 $100^{\circ}$ 반경이내에서 거리 1m내외의 물체를 감지하도록 설계하였다. 풍속제어는 물체까지의 거리를 최소 3cm 최대 3m 이내에서 물체를 감지하여 모터의 속도를 제어할 수 있도록 하였고, 모터속도는 DC모터를 PWM 방식으로 제어하여 속도를 조절하였다.