• Title/Summary/Keyword: ATP-sensitive potassium channels

Search Result 29, Processing Time 0.029 seconds

Effects of potassium channel modulators on the fatigue velocity of mouse skeletal muscle (K+ 통로 조절 약물이 마우스 골격근의 피로현상에 미치는 영향)

  • Lee, Ki-ho;Ryu, Pan-dong;Lee, Mun-han;Lee, Hang
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.245-254
    • /
    • 1995
  • The density of ATP-sensitive potassium($K_{APT}$) channels, that open as intracellular ATP concentration falls below a critical level, is very high in skeletal muscle surface membrane and those high density may imply that $K_{ATP}$ channels have very important physiological roles. To elucidate a role of $K_{ATP}$ in relation to fatigue, the modulating effects of potassium channel openers and blockers on the fatigue velocity(FV) of mouse extensor hallucis longus muscle(EHL) were investigated in vitro. Twitch contraction was induced by an electrical field stimulation (EFS: 24-48V, 20ms, 0.2-4Hz) and resulting contraction force was isometrically recorded. The twitch forces were gradually decreased to 25% of initial contraction force(ICF) in $37.52{\pm}1.55sec$($mean{\pm}s.e.m.$, n=135), indicating the fatigue phenomena. The mean velocity for development of the fatigue was measured during the period that twitch force decreased to half($FV_{0/0.5}$) and during the period from half to 25%($FV_{0.5/0.25}$) of ICF. The fatigue was induced once every one hour and the tissue response was stable for up to 4 hours. In control condition, ICF was $5.8{\pm}0.12g$ (n=144) and decreased to 50% of ICF with the mean fatigue velocity of $0.182{\pm}0.006g/sec$($FV_{0/0.5}$, n=135) and from 50% to 25% of ICF with $0.084{\pm}0.004g/sec$($FV_{0.5/0.25}$, n=135). Cromakalim($50{\mu}M$) significantly increased $FV_{0.5/0.25}$(n=4). Glibenclamide($IC_{50}>50{\mu}M$), $Ba^{2+}$($IC_{50}=10{\mu}M$), 4-aminopyridine($FV_{0/0.5}$, $IC_{50}=0.5mM$; $FV_{0.5/0.25}$, $IC_{50}=2mM$) decreased both $FV_{0/0.5}$ and $FV_{0.5/0.25}$ concentration-dependently up to 75%. $TEA^+$(30mM), E-4031($10{\mu}M$), tolbutamide(1mM) decreased $FV_{0.5/0.25}$, but apamin(300nM) and $TEA^+$(10mM) showed no significant effects. Our results suggest that activation of the $K_{ATP}$ channels may be major cause of $K^+$ outflux during development of the fatigue and the isolated EHL muscle could be an useful experimental preparation in studying the fatigue phenomena in skeletal muscle. In addition, the possibility of activation of delayed rectifier during the fatigue development remains to be studied further.

  • PDF

Influence of Nicorandil on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Koh, Young-Youp;Lee, Eun-Sook;No, Hae-Jeong;Woo, Seong-Chang;Chung, Joong-Wha;Seoh, Yoo-Seung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.97-106
    • /
    • 2007
  • The present study was attempted to investigate the effect of nicorandil, which is an ATP-sensitive potassium ($K_{ATP}$) channel opener, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of nicorandil ($0.3{\sim}3.0mM$) into an adrenal vein for 90 min produced relatively dose-and time-dependent inhibition in CA secretion evoked by ACh (5.32 mM), high $k^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, $100{\mu}M$ for 2 min), McN-A-343 (a selective muscarinic $M_1$ receptor agonist, $100{\mu}M$ for 4 min), Bay-K-8644 (an activator of L-type dihydropyridine $Ca^{2+}$ channels, $10{\mu}M$ for 4 min) and cyclopiazonic acid (an activator of cytoplasmic $Ca^{2+}$-ATPase, $10{\mu}M$ for 4 min). In adrenal glands simultaneously preloaded with nicorandil (1.0 mM) and glibenclamide (a nonspecific $K_{ATP}$-channel blocker, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of nicorandil-treatment only. Taken together, the present study demonstrates that nicorandil inhibits the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this inhibitory effect of nicorandil may be mediated by inhibiting both $Ca^{2+}$ influx and the $Ca^{2+}$ release from intracellular store through activation of $K_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that nicorandil-sensitive $K_{ATP}$ channels may play an inhibitory role in the regulation of the rat adrenomedullary CA secretion.

Expression of ATP-sensitive Potassium Channel and Sulfonylurea Receptor in Neonate and Adult Rat Tissues

  • Lee, So-Yeong;Lee, Hang;Lee, Mun-Han;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.433-441
    • /
    • 2001
  • The ATP-sensitive potassium $(K_{ATP})$) channel is a member of inward rectifier potassium channel (Kir) that is inhibited by intracellular ATP and functions in close relation to sulfonylurea receptors (SUR). Although the molecular mechanism and physiological function of $K_{ATP}$ channels are well understood, the expression pattern during development or treatment with the channel modulators such as glybenclamide is little known. In this work, we determined mRNA levels of a $K_{ATP}$ channel (Kir6.2) and a sulfonylurea receptor (SUR2) in rat tissues by RNase protection assay. Levels of Kir6.2 and SUR2 mRNA in the rat brain and skeletal muscle were higher in adult $(90{\sim}120\;days)$ than in neonate $(2{\sim}8\;days),$ whereas those in the heart were not much different between neonate $(2{\sim}8\;days)$ and adult $(90{\sim}120\;days).$ In addition, none of $K_{ATP}$ channel modulators (opener, pinacidil and nicorandil; blocker, glybenclamide) affected the Kir6.2 mRNA levels in the heart, brain and skeletal muscle. The results indicate that the expression of Kir and SUR genes can vary age-dependently, but the expression of Kir is not dependent on the long-term treatment of channel modulators. The effect of the channel modulators on mRNA level of SUR is remained to be studied further.

  • PDF

Systemic Administration of the Potassium Channel Activator in the Polystyrene Latex Bead-Induced Cerebral Vasospasm (Polystyrene Latex Bead에 의한 뇌혈관연축 모델에서 K+ 통로활성제의 전신투여)

  • Jang, Sung Jo;Kang, Sung Don;Yun, Ki Jung
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.6
    • /
    • pp.719-724
    • /
    • 2000
  • Objectives : It has been reported that the presence of a pharmacologically inactive foreign substance, polystyrene latex bead, in subarachnoid space activates a non-specific immunological response and elicits arterial narrowing. Recently the activation of potassium($K^+$) channels may be of benefit in relieving cerebral vasospasm. The present study examined the effects of systemic administration of a ATP-sensitive $K^+$ channel activator, cromakalim, on the polystyrene latex bead-induced cerebral vasospasm. Methods : The spasm models similar to that caused by subarachnoid blood injection were created by injection of bead into rabbit cisterna magna. Intravenous injections of cromakalim were administered twice daily(bid) 30 minutes after induction of vasospasm. Animals were killed by perfusion-fixation 2 days after vasospasm. Basilar arteries were removed and sectioned, and the luminal cross-sectional areas were measured. Results : Injection of bead elicited an arterial constriction, reducing arterial diameter to 33.3% of resting tone. Cromakalim inhibited bead-induced constriction at a dose of 0.3mg/kg(Mann-Whitney test, p<0.01). Conclusion : These results support the concept that the cellular events triggered by inactivation of ATP-sensitive $K^+$ channels are responsible for the pathogenesis of vasospasm. The findings also indicate that cromakalim represents a potential therapeutic agents for the treatment of cerebral vasospasm.

  • PDF

Activation of ATP-sensitive Potassium Channels by the Predominant Metabolite of Isoflurane in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Na-Ri;Kim, Eui-Yong;Kim, Sung-Ju;Cho, Kang-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.165-175
    • /
    • 2001
  • Background: Recent in vivo experimental evidence suggests that isoflurane-induced cardioprotection may involve $K_{ATP}$ channel activation. However, it was demonstrated that isoflurane inhibited $K_{ATP}$ channel activities in the inside-out patch mode. To explain this discrepancy, the present investigation tested the hypothesis that a metabolite of isoflurane, trifluoroacetic acid (TFA), contributes to isoflurnae-induced cardioprotection via $K_{ATP}$ channel activation during myocardial ischemia and reperfusion. Methods: Single ventricular myocytes were isolated from rabbit hearts by an enzymatic dissociation procedure. Patch-clamp techniques were used to record single-channel currents. $K_{ATP}$ channel activities were assessed before and after the application of TFA with the inside-out patch mode. Results: TFA enhanced channel activity in a concentration-dependent fashion. The concentration of TFA for half-maximal activation and the Hill coefficient were 0.03 mM and 1.2, respectively. TFA did not affect the single channel conductance of $K_{ATP}$ channels. Analysis of open and closed time distributions showed that TFA increased burst duration and decreased the interburst interval without changes in open and closed time distributions shorter than 5 ms. TFA diminished ATP sensitivity of $K_{ATP}$ channels in a concentration-response relationship for ATP. Conclusions: TFA, a metabolite of isoflurane, enhanced $K_{ATP}$ channel activity in a concentration-dependent fashion. These results imply that TFA could mediate isoflurane-induced cardioprotection via $K_{ATP}$ channel activation during myocardial ischemia and reperfusion.

  • PDF

Thiol-dependent Redox Mechanisms in the Modification of ATP-Sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Na-Ri;Cuong, Dang-Van;Kim, Chung-Hui;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • Cellular redox state is known to be perturbed during ischemia and that $Ca^{2+}$ and $K^2$ channels have been shown to have functional thiol groups. In this study, the properties of thiol redox modulation of the ATP-sensitive $K^2$ ($K_{ATP}$) channel were examined in rabbit ventricular myocytes. Rabbit ventricular myocytes were isolated using a Langendorff column for coronary perfusion and collagenase. Single-channel currents were measured in excised membrane patch configuration of patch-clamp technique. The thiol oxidizing agent 5,5'-dithio-bis-(2-nitro-benzoic acid) (DTNB) inhibited the channel activity, and the inhibitory effect of DTNB was reversed by dithiothreitol (disulfide reducing agent; DTT). DTT itself did not have any effect on the channel activity. However, in the patches excised from the metabolically compromised cells, DTT increased the channel activity. DTT had no effect on the inhibitory action by ATP, showing that thiol oxidation was not involved in the blocking mechanism of ATP. There were no statistical difference in the single channel conductance for the oxidized and reduced states of the channel. Analysis of the open and closed time distributions showed that DTNB had no effect on open and closed time distributions shorter than 4 ms. On the other hand, DTNB decreased the life time of bursts and increased the interburst interval. N-ethylmaleimide (NEM), a substance that reacts with thiol groups of cystein residues in proteins, induced irreversible closure of the channel. The thiol oxidizing agents (DTNB, NEM) inhibited of the $K_{ATP}$ channel only, when added to the cytoplasmic side. The results suggested that metabolism-induced changes in the thiol redox can also modulate $K_{ATP}$ channel activity and that a modulatory site of thiol redox may be located on the cytoplasmic side of the $K_{ATP}$ channel in rabbit ventricular myocytes.

Cloning of a pore-forming subunit of ATP-sensitive potassium channel from Clonorchis sinensis

  • Hwang, Seung-Young;Han, Hye-Jin;Kim, So-Hee;Park, Sae-Gwang;Seog, Dae-Hyun;Kim, Na-Ri;Han, Jin;Chung, Joon-Yong;Kho, Weon-Gyu
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.2
    • /
    • pp.129-133
    • /
    • 2003
  • A complete cDNA sequence encoding a pore-forming subunit (Kir6.2) of ATP-senstive potassium channel in the adult worm, Clonorchis sinensis, termed CsKir6.2, was isolated from an adult CDNA library. The cDNA contained a single open-reading frame of 333 amino acids, which has a structural motif (a GFG-motif) of the putative pore-forming loop of the Kir6.2. Peculiarly, the Cskir6.2 shows a lack-sequence structure, which deleted 57 amino acids were deleted from its N-terminus. The predicted amino acid sequence revealed a highly conserved sequence as other known other Kir6.2 subunits. The mRNA was weekly expressed in the adult worm.

Effects of Lemakalim, a Potassium Channel Opener, on the Contractility and Electrical Activity of the Antral Circular Muscle in Guinea-Pig Stomach

  • Kim, Sung-Joon;Jun, Jae-Yeoul;Choi, Youn-Baik;Kim, Ki-Whan;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.37-50
    • /
    • 1994
  • Synthetic potassium channel openers (KCOs) are agents capable of opening K-channels in excitable cells. These agents are known to have their maximal potency in the smooth muscle tissue, especially in the vascular smooth muscle. Much attention has been focused on the type of K-channel that is responsible for mediating the effects of KCOs. As the KCO-induced changes are antagonized by glibenclamide, an $K_{ATP}$ (ATP-sensitive K-channel) blocker in the pancreatic ${\beta}-cell,\;K_{ATP}$ was suggested to be the channel responsible. However, there also are many results in favor of other types of K-channel $$(maxi-K,\;small\;conductance\;K_{Ca,}\; SK_{ATP}) mediating the effects of KCOs. Effects of lemakalim, (-)enantiomer of cromakalim (BRL 34915), on the spontaneous contractions and slow waves, were investigated in the antral circular muscle of the guinea-pig stomach. Membrane currents and the effects on membrane currents and single channel activities were also measured in single smooth muscle cells and excised membrane patches by using the patch clamp method. Lemakalim induced hyperpolarization and inhibited spontaneous contractions in a dose-dependent manner. These effects were blocked by glibenclamide and low concentrations of tetraethyl ammonium (< mM). Glibenclamide blocked the effect of lemakalim on the membrane potential and slow waves. The mechanoinhibitory effect of lemakalim was blocked by pretreatment with glibenclamide. In a whole ceIl patch clamp condition, lemakalim largely increased outward K currents. These outward K currents were blocked by TEA, glibenclamide and a high concentration of intracelIular EGTA (10 mM). Volatage-gated Ca currents were not affected by lemakalim. In inside-out patch clamp experiments, lemakalim increased the opening frequency of the large conductance $Ca^{2+}-activated$ K channels $(BK_{Ca},\;Maxi-K).$ From these results, it is suggested that lemakalim induces hyperpolarization by opening K-channels which are sensitive to internal Ca and such a hyperpolarization leads to the inhibition of the spontaneous contraction.

  • PDF

INFLUENCE OF PINACIDIL ON CATECHOLAMINE SECRETION EVOKED BY CHOLINERGIC STIMULATION AND MEMBRANE DEPOLARIZATION FROM THE RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Park, Geun-Hong;Choi, Cheol-Hee;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.148-149
    • /
    • 1998
  • It has been known that potassium channel openers are a new class of molecules that have attracted general interest because of their potent antihypertensive activity in vivo and vasorelaxant activity in vitro (Hamilton and Weston, 1989). In the present study, it was attempted to examine the effect of the potassium channel opener on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. The perfusion of pinacidil (30-300 uM) into an adrenal vein for 20 min produced relatively dose-dependent inhibition in CA secretion evoked by ACh (5.32 mM), high $K^{+}$ (56 mM), DMPP (100 uM for 2 min), McN-A-343 (100 uM for 2 min), cyclopiazonic acid (10 uM for 4 min) and Bay-K-8644 (10 uM for 4 min). Also, under the presence of minoxidil (100 uM), which is also known to be a potassium channel activator, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with pinacidil (100 uM) under the presence of glibenclamide (1 uM), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were considerably recovered to a considerable extent of the normal release as compared to that of pinacidil only. These results, taken together, suggest that pinacidil cause the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells. Furthermore, these findings suggest strongly that these potassium channel openers-sensitive membrane potassium channels also play an important role in regulating CA secretion.

  • PDF

Ameliorating Effects of Sulfonylurea Drugs on Insulin Resistance in Otsuka Long-Evans Tokushima Fatty Rats

  • Park, Jeong-Kwon;Kim, Sang-Pyo;Song, Dae-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium $(K_{ATP})$ channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of $K_{ATP}$ channels, insulin receptor ${\beta}$-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that $K_{ATP}$-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on $K_{ATP}$ channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects.