• 제목/요약/키워드: ATP-sensitive K$^+$ (K$_{ATP}$) channels

검색결과 63건 처리시간 0.02초

흰쥐의 뇌 기저동맥에서 CGRP에 의한 혈관 이완반응의 기전에 대한 연구 (Pharmacological Action Mechanism(s) of Vasodilator Effect of Calcitonin Gene-related Peptide in Rat Basilar Arteries)

  • 임병용;홍선화;김치대;이원석;김동헌;홍기환
    • 대한약리학회지
    • /
    • 제32권1호
    • /
    • pp.39-49
    • /
    • 1996
  • 본 실험에서는 흰쥐의 뇌 기저동맥을 이용하여 $K^+$과 U46619에 의한 수축과 세포내 $Ca^{2+}$의 변동을 관찰하고, 이들 반응을 CGRP 전처치시 나타나는 반응과 비교하였다. CGRP (30과 100 nM)는 U46619에 의하여 야기된 수축반응과 세포내 $Ca^{2+}$의 증가반응을 억제시켰으나, $K^+$ (90 mM)에 의하여 나타나는 반응에는 영향을 미치지 아니하였다. 게다가, U46619에 의하여 야기되는 장력에 대하여 세포내 $Ca^{2+}$의 변동 $(F_{340}/F_{380})$을 도표화하여 세포내 $Ca^{2+}$ 농도와 장력의 발생과의 상관관계를 검토하고, 이들 결과를 CGRP 전처치시 나타나는 결과와 비교하였다. CGRP (30과 100 nM) 전처치군에서 얻어진 직선이 오른쪽으로 치우치지는 않으면서 아래쪽으로 이동하는 점으로 볼 때, CGRP가 $Ca^{2+}$에 대한 수축기구의 감수성에는 영향을 미치지 않으면서 세포내 $Ca^{2+}$ 농도를 저하시킴에 의하여 U46619에 의한 근수축반응을 억제시키는 것으로 보여진다. 이러한 CGRP의 효과는 CGRP1 수용체 길항제인 CGRP$(8{\sim}37)$ 분획(100 nM)의 전처치시 현저히 억제되었다. CGRP에 의한 수축력과 세포내 $Ca^{2+}$의 저하는 large conductance $Ca^{2+}$에 의하여 활성화되는 $K^+$ 통로 봉쇄제인 charybdotoxin (100 nM)과 iberiotoxin (100 nM)의 전처치에 의하여 완전하게 역전되었으나, small conductance $Ca^{2+}$에 의하여 활성화되는 $K^+$ 통로 봉쇄제인 apamin (300 nM)과 ATP에 감수성이 높은 $K^+$ 통로 봉쇄제인 glibenclamide (1 ${\mu}M$)에 의해서는 영향을 받지 아니하였다. 이상의 결과로 볼 때 CGRP1 수용체는 $Ca^{2+}$에 의하여 활성화되는 $K^+$ 통로를 개방시킴으로 세포내 $Ca^{2+}$을 감소시켜 뇌 기저동맥의 이완반응을 매개하는 것으로 사료된다.

  • PDF

생쥐 소장 카할세포의 내향성 향도잡이 전압에 미치는 내소산의 억제효과에 관한 연구 (Inhibitory Effects of Naeso-san on Pacemaker Potentials in Interstitial Cells of Cajal of Murine Small Intestine)

  • 홍누리;안태석;박현수;채한;권영규;김병주
    • 동의생리병리학회지
    • /
    • 제28권6호
    • /
    • pp.630-635
    • /
    • 2014
  • The purpose of this study was to investigate the effects of Naeso-san in interstitial cells of Cajal (ICCs) in murine small intestine. First, we isolated ICCs from murine small intestine. After that, we cultured these cells for 1 days. The patch-clamp technique was applied on ICCs that formed network-like structures in culture (1 days). Spontaneous rhythms were routinely recorded from cultured ICCs under current-clamp conditions, and the ICCs within networks displayed more robust electrical rhythms (pacemaker potentials). To understand the relationship between Naeso-san and pacemaker activity in ICCs, we examined the effects of Naeso-san on pacemaker potentials of ICCs. In current clamp mode (I = 0), the addition of Naeso-san (10 mg/ml - 50 mg/ml) decreased the amplitude and frequency of the pacemaker potentials of ICCs in a dose dependent manner. However, these effects were blocked by intracellular $GDP{\beta}S$, a G-protein inhibitor, and glibenclamide, a specific ATP-sensitive K+ channels blocker. Pretreatment with SQ-22536, an adenylate cyclase inhibitor, did not block the Naeso-san induced effects, whereas pretreatment with ODQ, a guanylate cyclase inhibitor, or L-NAME, an inhibitor of nitric oxide (NO) synthase blocked the Naeso-san induced effects. Our findings provide insight into unraveling the modulation of Naeso-san in pacemaker potentials of ICCs and developing therapeutic agents against gastrointestinal motility disorders.

Induces Vasodilatation of Rat Mesenteric Artery in vitro Mainly by Inhibiting Receptor-Mediated $Ca^{2+}$ -Influx and $Ca^{2+}$ -Release

  • Cao Yong-Xiao;Zheng Jian-Pu;He Jian-Yu;Li Jie;Xu Cang-Bao;Edvinsson Lars
    • Archives of Pharmacal Research
    • /
    • 제28권6호
    • /
    • pp.709-715
    • /
    • 2005
  • The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1$\mu$M, relaxed the noradrenalin (NA)-precontracted rat mesenteric artery in a concentration-dependent manner. Atropine-induced vasodilatation was mediated, in part, by an endothelium-dependent mechanism, to which endothelium-derived hyperpolarizing factor may contribute. Atropine was able to shift the NA-induced concentration-response curve to the right, in a non-parallel manner, suggesting the mechanism of atropine was not mediated via the ${\alpha}_1$-adrenoreceptor. The $\beta$-adrenoreceptor and ATP sensitive potassium channel, a voltage dependent calcium channel, were not involved in the vasodilatation. However, atropine inhibited the contraction derived from NA and $CaCl_2$ in $Ca^{2+}$-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular $Ca^{2+}$ influx through the receptor-operated calcium channels and intracellular $Ca^{2+}$ release from the $Ca^{2+}$ store. Atropine had no effect on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular $Ca^{2+}$ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells due to inhibition of the receptor-mediated $Ca^{2+}$-influx and $Ca^{2+}$-release, and partly from the endothelium mediated by EDHF.