• Title/Summary/Keyword: ATP regeneration

Search Result 22, Processing Time 0.021 seconds

Heterologous Expression of Streptomyces albus Genes Linked to an Integrating Element and Activation of Antibiotic Production

  • Kwon, Hyung-Jin;Lee, Soon-Youl;Hong, Soon-Kwang;Park, Uhn-Mee;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.488-497
    • /
    • 1999
  • Probing Streptomyces albus ATCC 21838 chromosomal DNA with a proline tRNA sequence resulted in an isolation of a putative integrating element in the 6.4-kb EcoRI fragment. It was found that Streptomyces lividans TK-24 transformed with a cloned DNA fragment on a multicopy plasmid, produced a higher level of spore pigment and mycelial red pigment on a regeneration agar. Furthermore, the transformant S. lividans TK-24 produced a markedly increased level of undecylprodigiosin in a broth culture. A nucleotide sequence analysis of the cloned region revealed several open reading frames homologous to the integrases of integrating plasmids or temperate bacteriophages, signal-transducing regulatory proteins with a conserved ATP-binding domain, oxidoreductases ($\beta$-ketoacyl reductase), and an AraC-like transcriptional regulator. To examine the effect on antibiotic production, each coding region was overexpressed separately from the other genes in the region in S. lividans TK-24 with; pJHS3044 for the expression of the signal-transducing regulatory protein homologue, pJHS3045 for the homologue of oxidoreductase, and pJHS3051 for the homologue of the AraC-like transcriptional regulator. Phenotypic studies of S. lividans TK-24 strains harboring plasmids for the overexpression of individual genes suggested the following effects of the genes on antibiotic production: The oxidoreductase homologue stimulated the production of actinorhodin and undecylprodigiosin, which was influenced by the culture conditions; the homologue of the AraC-like transcriptional regulator was the most effective factor in antibiotic production within all the culture conditions tested; the signal-transducing regulatory protein homologue repressed the effect due to the homologue of the AraC-like transcriptional regulator, however, the antibiotic production was derepressed upon entering the stationary phase.

  • PDF

NLRP3 Inflammasome in Neuroinflammatory Disorders (NLRP3 인플라마좀 작용 기전 및 신경 질환에서의 역할)

  • Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.237-247
    • /
    • 2021
  • Immune responses in the central nervous system (CNS) function as the host's defense system against pathogens and usually help with repair and regeneration. However, chronic and exaggerated neuroinflammation is detrimental and may create neuronal damage in many cases. The NOD-, LRR-, and pyrin domain―containing 3 (NLRP3) inflammasome, a kind of NOD-like receptor, is a cytosolic multiprotein complex that consists of sensors (NLRP3), adaptors (apoptosis-associated speck like protein containing a caspase recruitment domain, ASC) and effectors (caspase 1). It can detect a broad range of microbial pathogens along with foreign and host-derived danger signals, resulting in the assembly and activation of the NLRP3 inflammasome. Upon activation, NLRP3 inflammasome leads to caspase 1-dependent secretion of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. NLRP3 inflammasome is highly expressed in CNS-resident cell types, including microglia and astrocytes, and growing evidence suggests that NLRP3 inflammasome is a crucial player in the pathophysiology of several neuroinflammatory and psychiatric diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, traumatic brain injury, amyotrophic lateral sclerosis, and major depressive disorder. Thus, this review describes the molecular mechanisms of NLRP3 inflammasome activation and its crucial roles in the pathogenesis of neurological disorders.