• Title/Summary/Keyword: ATP level

Search Result 267, Processing Time 0.029 seconds

The Effects of Ginseng Saponin Fraction on Growth and Siderophore Formation in Eseherichia coli K-12 (인삼사포닌 분획이 Escherichia coli K-12의 성장과 Siderophore 생성에 미치는 영향)

  • 조영동;이용범
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.102-107
    • /
    • 1983
  • The effects of saponin, one of major components (Panax ginseng C.A. Meyer), on the growth of E. coli K-12 and the formation of siderphore was observed The following results were obtained. 1. When E. coli was grown on medium containing 1${\times}$10-5%-11${\times}$10-1% of the saponin, the rate of growth was stimulated at 10-1% of the saponin significantly compared to that of control. 2. When E. coli K-12 was grown on medium containing 1${\times}$10-1% of the saponin, the amount of siderphore was two times as much as the control. 3. The growth of E. coli was observed to be dependent on the concentration of siderophore when siderophore was added to medium. 4. The effect of saponin on the formation of siderophore in vitro was observed to reach maximum at 1${\times}$10-3% of the saponin. Such results suggest that the growth rate of E. coli K-12 could be enhanced by ginseng saponin fraction through stimulation of siderphore formation. We have described the fast growth of E. coli, K-12 and B. subtilis, rapid uptake of 14C-glucose, and high level of other metabolites such as lipids and proteins of E. coli, and B. subtilis in medium containing saponing fraction compared to that of microorganisms without saponin fraction.1∼3Such differences were claimed to be due to rapid uptake of 14C-glucose by widened periplasmic region throught unknown mechanism in the prescence of saponin fraction in medium3 and have raised a question whether there is another possible factor, siderophore4(Greek for iron bears), since microorganisms must secure a sufficient amount of iron for normal growth. These are known to be synthesized by the cells under iron-deficient condition and in most case, excreted into the medium5, where they can complex and solubilize any iron present there. It is generally believed that these complexes are then taken into the cells presumably by specific transport systems, thus providing iron for cell metabolism. Within the group of enteric bacteria, only three species (E. coli, S. typhimurium, and A. aerogense) have, so far, been studied in a ny detail. The main iron-binding compound produced by these species is enterochelin, and its role in iron transport is now well established. And biosynthesis of enterochelin from 2, 3- dihydroxybenzoate and serine in the prescence of magnesium ions and ATP was reported6. 2, 3-dihydroxybenzoate was also shown to involve isochorismate and 2, 3-dihydro-2, 3-dihydroxybenzoate as intermediate.7∼11 The present paper deals with the effect of ginseng saponin fraction on growth, the level of enterochelin formation in vivo and the conversion of 2, 3-dihydroxybenzoate and serine into entrochelin in vitro, and entrochelin obtained on the growth in relation to possible explanation of ginseng saponin fraction on the rapid growth of E. coli, K-12.

  • PDF

Comparative physiological and proteomic analysis of leaf in response to cadmium stress in sorghum

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Kim, Sang-Woo;Lee, Moon-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.124-124
    • /
    • 2017
  • Cadmium (Cd) is of particular concern because of its widespread occurrence and high toxicity and may cause serious morpho-physiological and molecular abnormalities in in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potentiality associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and $150{\mu}M$) of $CdCl_2$, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights, and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied level of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Significant changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. In addition, the up-regulation of glutathione S-transferase and cytochrome P450 may play a significant role in Cd-related toxicity and stress responses. Our study provides insights into the integrated molecular mechanisms involved in response to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. The upregulation of these stress-related genes may be candidates for further research and use in genetic manipulation of sorghum tolerance to Cd stress.

  • PDF

Effect of Cadmium on the Expression of ABC Transporters and Glutathione S-transferase in the Marine Ciliate Euplotes crassus (카드뮴이 해양 섬모충(Euplotes crassus)의 ABC Transporters와 GST 유전자 발현에 미치는 영향에 관한 연구)

  • Kim, Hokyun;Kim, Se-Hun;Kim, Ji-Soo;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • Heavy metals such as cadmium (Cd) are highly toxic to aquatic organisms and human, even at trace concentration. Herein we investigated the effect of Cd on the gene expression of ATP-binding cassette (ABC) transporters and glutathione S-transferase (GST) in marine ciliate Euplotes crassus. Seven ABC transporters and one GST genes were partially cloned and sequences, and thereafter, transcriptional modulation of these genes after exposure to Cd for 8 h was investigated using quantitative real time RT- PCR (qRT-PCR). As results, sequence analysis and phylogenetic study revealed that E. crassus ABCs are likely typical ABC transports, in particular, B/C family, and GST gene may be similar to GST theta isoform. A significant increase in the expression of ABCs, except for ABCB21 was observed in a concentration dependent manner after exposure to Cd (0.1 and 0.5 mg/l) for 8 h. The GST mRNA level was the highest at 0.5 mg/l Cd and then reduced until control level. These findings suggest that ABCs and GST may be involved in a protective mechanism against Cd-mediated toxicity in E. crassus.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Changes in Blood Lipid Profile and Hepatic Enzyme Levels after Oriental Medical Treatment to Metabolic Syndrome Patients with Abnormal Liver Function

  • Kim, Dong-Woung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1626-1632
    • /
    • 2008
  • Among patients who are receiving treatments at an oriental medical hospital for various symptoms and diseases, patients whose main disease is accompanied by metabolic syndrome with abnormal liver function. This research was performed in order to observe the progression of changes in the liver function and serum lipid profile after the oriental medical treatments to patients who have been receiving oriental medical treatment for various other diseases and have been diagnosed as having metabolic syndrome at their first visit to the hospital based on NCEP ATP III diagnosis criteria and WHO Asia Pacific region criteria. Total number of subject patients were 39cases(mean age:55.58${\pm}$2.09 years) which had 20 male and 19 female. For the references for hepatic enzyme levels and blood lipid profile were measured in before treatment and four times after treatments(every 2.31${\pm}$06.17 weeks). Serum AST was 48.86${\pm}$7.46 IU/L before oriental medical treatment. After the treatment, 40.63${\pm}$4.69, 43.12${\pm}$5.46, 37.82${\pm}$4.52 IU/L were measured where although the level decreased to the normal level compared to pre-treatment, the value was not significant statistically(P>0.05). ALT was 66.26${\pm}$11.01 IU/L before oriental medical treatment. After the treatment 62.10${\pm}$8.20, 61.10${\pm}$8.76, 43.79${\pm}$5.68 were measured where although the level decreased, abnormally high level was maintained. The last result was significant statistically(P<0.05) compared to pre-treatment. ALP was 193.06${\pm}$14.20 IU/L before oriental medical treatment. After the treatment, 176.80${\pm}$6.48, 177.46${\pm}$11.81, 162.41${\pm}$9.06 where although compared to pre-treatment the last result was significant statistically(P<0.05), the change was within the normal range. ${\gamma}$-GGT was 87.83${\pm}$12.59 IU/L before oriental medical treatment. After the treatment, progressively near normal level was achieved with 118.73${\pm}$46.45, 85.03${\pm}$17.12, 70.64${\pm}$10.93 and the last result was statistically significant compared to pre-treatment (P<0.05). Blood triglyceride was 217.63${\pm}$32.18 mg/dL before oriental medical treatment. After treatment 215.09${\pm}$22.18, 189.93${\pm}$22.44, 191.22${\pm}$18.51 where abnormal values continued even after treatment although results was not statistically significant compared to pre-treatment(P>0.05). Total-cholesterol was 197.28${\pm}$9.24 mg/dL before oriental medical treatment, after treatment 201.55${\pm}$11.13, 186.87${\pm}$8.77 and 186.68${\pm}$7.61 were measured that results were not statistically significant compared to pre-treatment(P>0.05). HDL-cholesterol was 41.88${\pm}$2.38 mg/dL before oriental medical treatment, after treatment 48.75${\pm}$4.22, 44.10${\pm}$1.91, 48.00${\pm}$2.06 the results were not statistically significant compared to pre-treatment(P>0.05). LDL-cholesterol was 111.66${\pm}$13.08 mg/dL before oriental medical treatment, after treatment 109.94${\pm}$10.18, 101.79${\pm}$8.63, 104.00${\pm}$6.98 the results were not statistically significant compared to pre-treatment(P>0.05). With such results, even if common oriental medical treatments were given to metabolic syndrome patients with abnormal liver function, the liver function was confirmed not to be aggravated, and the concentration of lipids in the blood was confirmed not to be affected in most patients.

Mitigation Effects of Foliar-Applied Hydrogen Peroxide on Drought Stress in Sorghum bicolor (과산화수소 엽면 처리에 의한 수수에서 한발 스트레스 완화 효과)

  • Shim, Doo-Do;Lee, Seung-Ha;Chung, Jong-Il;Kim, Min Chul;Chung, Jung-Sung;Lee, Yeong-Hun;Jeon, Seung-Ho;Song, Gi-Eun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.113-123
    • /
    • 2020
  • Global climatic change and increasing climatic instability threaten crop productivity. Due to climatic change, drought stress is occurring more frequently in crop fields. In this study, we investigated the effect of treatment with hydrogen peroxide (H2O2) before leaf development on the growth and yield of sorghum for minimizing the damage of crops to drought. To assess the effect of H2O2 on the growth of sorghum plant, 10 mM H2O2 was used to treat sorghum leaves at the 3-leaf stage during growth in field conditions. Plant height, stem diameter, leaf length, and leaf width were increased by 7.6%, 9.6%, 8.3% and 11.5%, respectively. SPAD value, chlorophyll fluorescence (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were increased by 3.0%, 4.9%, 26.0%, 23.4% and 12.7%, respectively. The amount of H2O2 in the leaf tissue of sorghum plant treated with 10 mM H2O2 was 0.7% of the applied amount after 1 hour. The level increased to approximately 1.0% after 6 hours. The highest antioxidant activity measured by the Oxygen Radical Absorbance Capacity assay was 847.3 µmol·g-1 at 6 hour after treatment. However, in the well-watered condition, the concentration of H2O2 in the plant treated by the foliar application of H2O2 was 227.8 µmol·g-1 higher than that of the untreated control. H2O2 treatment improved all the yield components and yield-related factors. Panicle length, plant dry weight, panicle weight, seed weight per plant, seed weight per unit area, and thousand seed weight were increased by 8.8%, 18.0%, 24.4%, 24.7%, 29.9% and 7.1%, respectively. Proteomic analysis showed that H2O2 treatment in sorghum increased the tolerance to drought stress and maintained growth and yield by ameliorating oxidative stress.

Biochemical Composition of Marine Microalgae and Their Potential Antimicrobial Activity

  • Kim Se-Kwon;Jeon You-Jin;Kim Won-Suk;Back Ho-Cheol;Park Pyo-Jam;Byun Hee-Guk;Bai Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.2
    • /
    • pp.75-83
    • /
    • 2001
  • This study is to investigate biochemical compositions of two species of marine microalgae, Chlorella ellipsoidea of Chlorophyta and Tetraselmis suecica of Prasinophyta, and to assess their potential antimicrobial activities. Crude protein, lipid and carbohydrate for C. ellipsoidea were $43.15\%$, $12.63\%$ and $13.09\%$, respectively, and those for T. suecica were $44.95\%$, $4.80\%$ and $24.05\%$, respectively. The major amino acids of the two micro algae were aspartic acid, glutamic acid, glycine, alanine, valine, leucine, lysine and proline, and no significant difference between the amino acid compositions of both micro algae was observed. The major sugars for both microalgae were glucose, galactose and mannose, and glucose contents showed the highest level, $58.70\%$ for C. ellipsoidea and$57.86\%$ for T. suecica. The major mineral contents of both micro algae for 100g were Ca (3,114mg in C. ellipoidea and 3,389mg in T. suecica) and followed by Na (2,881mg), K (548mg) and Mg (545mg) for C. ellipsoidea and Na (1,832 mg), Mg (1,510mg) and K (548mg) for T. suecica. In the content of ATP-related compound, hypoxanthine in C. ellipsoidea and IMP in T. suecica were absolutely dominant compounds. The highest content of fatty acid in C. ellipsoidea was 20:4, $27.15\%$ and that in T. suecica was 18:3 (w-6), $18.10\%$. In case of physiologically important polyunsaturated fatty acids like eicosapentaenoic acid (20: 5) and docosahexaenoic acid (22: 6), both microalgae possessed just trace amounts but was rich in arachidonic acid (20: 4). Vitamin content in both microalgae was significantly high in choline and inositol. In antimicrobial activity by water- and fat-soluble fraction of the micro algae, hexane extract in the fat-soluble fraction of C. elliposidea inhibited the growth of Bacillus subtilis by $96\%$ bactericidal activity and tetrachlorocarbon extract of T. suecica indicated relatively excellent antimicrobial activity $(81\%\;bactericidal\;activity)$ against Escherichia coli. Hot water extract among water-soluble fraction of both micro algae almost suppressed the growth of Staphylococcus aureus by $96\%$ bactericidal activity.

  • PDF

Adenyl Cyclase Activity in Cold-acclimatized Animals (한냉적응이 Adenyl Cyclase Activity에 미치는 영향)

  • Kang, Bok-Soon;Lee, Sang-Ho;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 1974
  • The object of this research is aimed to determine the activity of adenyl cyclase in both skeletal muscle sarcolemma and fat cell ghost of epididymal adipose tissue isolated from rats exposed to cold for various length of time in an attempt to evaluate whether the tissue sensitivity to catecholamine is increased when rats are exposed to cold for long periods of time Methods: a)Animals: Albino rats ranging in weight from 150 to 200 gm were used throughout this study. For experimental purposes, the rats are divided into two groups: experimental animals were place4 in a cold room at $4^{\circ}C$, controls being kept at $25^{\circ}C$. At the end of 2, 4, 6, 12, and 16 weeks. exposure to cold the rats were used to measure the adenyl cyclase activity. b) Isolation of plasma membrane from skeletal muscle and adipose tissue: The Plasma membrane of skeletal muscle from hind limbs of rats are prepared by the method employed by Rosenthal et at. and fat cell ghost of epididymal adipose tissue of rats by the method employed by Rodbell. c) Adenyl cyclase assay: Adenyl cyclase activity were measured by the method employed by Marinetti et al. Briefly, plasma membrane was incubated with $3^H-ATP$, various amount of noradrenaline and other incubation mixture at $37^{\circ}C$ for 20 minutes. After stopping the enzyme reaction by immersion in boiling water, carrier 3',5'-AMP was added to the system as a marker and $100\;{\mu}1$ aliquots of incubation mixture were pipetted on $20{\time}20$ Whatman No. 3 MM filter paper for one dimensional chromatography. The cyclic AMP spots were cut off and placed in counting vials containing 10ml of Bray's scintillation cocktail. Radioactivity was determined with a Packard Tri-Carb liquid scintillation counter. The enzyme activity is expressed as nanomoles of cyclic AMP produced per mg of membrane per hour. Result: 1. Average adenyl cyclase activity in the plasma membrane of skeletal muscle before and after noradrenaline administration was significantly higher in the cold-exposed rats as compared to the control. Continuous exposure to cold Produced an increased adenyl cyclase activity before and after noradrenaline administration. Adenyl cyclase activity reached peak levels at the 6 weeks exposure to told and level of adenyl cyclase activity remained high. Noradrenaline administration to the incubation medium induced a significant increase in adenyl cyclase activity and the degree of stimulation were proportional to the hormonal concentration But the rate of inclement in adenyl cyclase activity by noradreasline was the same in both groups. 2. Adenyl cyclase activity in fat cell ghost between cold exposed and control rats showed no significant differences before and after noradreualine administration. In summary, it can be concluded that cold adaptation give rise an increased activity of adenyl cyclase in plasma membrane of skeletal muscle in rats.

  • PDF

Characteristics of hypoxia-induced ANP Secretion in Perfused Beating Atria (허혈성 자극에 의한 심방이뇨 호르몬 분비 반응의 특성)

  • Kim, Kong-Soo;Kim, Min-Ho;Kim, Chang-Gon;Kim, Suk-Kee;Cho, Kyung-Woo;Cui, Xun
    • Journal of Chest Surgery
    • /
    • v.33 no.5
    • /
    • pp.398-406
    • /
    • 2000
  • Background: Cardiac atrium is an endocrine gland secreting a family of natriuretic peptides. The secretion of atrial natriuretic peptide(ANP) had been shown to be controlled by variable factors. The change in atrial dynamics have been considered as one of the most prominent stimuli for the stimulation of ANP secretion. Hypoxic stress has been shown to increase cardiac ANP secretion. However, the mechanism by which hypoxia increases ANP secretion cardiac ANP secretions. However, the mechanism by which hypoxia increases ANP secretion has not to be defined. Therefore, the purpose of the present study was tow-fold: to develop a protocol to defined the effect of hypoxia on ANP secretion in perfused beating rabbit atria and to clarify the mechanism responsible for the accentuation by hypoxia of ANP secretion. Material and Method: Experiments have been done in perfused beating rabbit atria. ANP was measured by radioimmunoassay. Result: Hypoxic stimulus with nitrogen decreased atrial stroke volume. The decrease in atrial stroke volume recovered basal level during the period of recovery with oxygen. ANP secretion and the concentration of perfusate ANP in terms of extracellular fluid(ECF) translocation which reflects the rate of myocytic release of ANP were increased by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled to that of atrial stroke volume. At the start of recovery in atrial storke volume, ECF tranalocation incrased for several minutes. The above responses were stable and reproducible. Glibenclamide treatment prevented the recovery in atrial stroke volume. Increments by hypoxia of ANP secretion and ANP concentration were suppressed by glibenclamide. Conclusion: These results indicate that hypoxia incrased atrial myocytic ANP release and that the mechanism responsible for the accentuation is partially related to the change in K+ATP channel activity.

  • PDF

The Effects of Chungganhaeju-tang(Qingganjiejiu-tang) on Alcoholic Liver Damages by Applying Proteomics (청간해주탕(淸肝解酒湯)이 알코올 유발 간섬유화와 단백질 발현에 미치는 영향)

  • Jun, Jae-Hyun;Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.469-489
    • /
    • 2008
  • Objectives : The purpose of this study was to investigate the effects of Chungganhaeju-tang(Qingganjiejiu-tang) on alcoholic liver damaged by applying proteomics. Materials and Methods : Sprague-Dawley rats were used in this experiment the rats were divided into the normal group, the control group(alcohol) and the sample group(CGHJT +alcohol). The ethanol was orally administered twice a day for 6 weeks in the control and sample groups. Water instead of ethanol was orally administered twice a day for 6 weeks in the normal group. CGHJT extract was orally administered once a day for 6 weeks in the sample group. The livers of each group were processed and assessed by histology, Western Blot, $Oxyblot^{TM}$, CBB and 2-dimensional electrophoresis. Results : In the histological findings of the liver, CGHJT inhibited hepatic fibrogenesis induced by alcohol. TIMP-1 decreased in the sample group assessed by western blot and statistical significance was noted by dot blotting(p<0.05). In the $Oxyblot^{TM}$, protein oxidation induced by alcohol treatment decreased with CGHJT. In the 2-dimensional electrophoresis finding, increased proteins alcohol such as HSP 60, 60kDa heat shock protein, 3-mercaptopyruvate sulfurtransferase were normalized by CGHJT. CGHJT was considered to normalize the anti-oxidation activity elevated by alcohol. In the 2-dimensional electrophoresis finding, increased oxidized proteins such as actin, prolyl 4-hydroxylase beta polypeptide, 94kDa glucose regulated protein(GRP94), heat shock protein 90-alpha(HSC86), calreticulin precursor(CRP55), ATP synthase beta chain mitochondrial precursor, caspase-8 precursor, and dihydrolipoamide succinyltransferase(E2) decreased with CGHJT. CGHJT was considered to reduce the oxidative stress of alcohol. Conclusion : Chungganhaeju-tang(Qingganjiejiu-tang) exerts an inhibitory effect against the fibrosis and protein oxidation induced by alcohol treatment of rat liver. CGHJT was considered to normalize the elevated anti-oxidation activity by alcohol and to reduce the level of oxidative stress due to alcohol.

  • PDF