• Title/Summary/Keyword: ATP binding

Search Result 242, Processing Time 0.018 seconds

Isolation and Characterization of vasa Gene of Triploid and Diploid Human Lung Flukes (Paragonimus westermani) (폐흡충의 이배체와 삼배체 vasa 유전자 분석 및 특징)

  • Lee, Keun-Hee;Yu, Hak-Sun;Hur, Jae-Won;Yu, Sung-Suk;Choi, Sun-Hee;Park, Sang-Kyun;Lee, Sun-Joo;Chung, Dong-Il;Kong, Hyun-Hee;Ock, Mee-Sun;Jeong, Hae-Jin
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.462-469
    • /
    • 2007
  • In this study, we isolated, characterized, and compared the vasa homologous genes of diploid and triploid Paragonimus westermani and localized VASA homologous proteins in both lung fluke types. Open reading frames of Pw-vasa-2n and Pw-vasa-3n were of 1812 bp, and encoded deduced proteins of 622 amino acids with calculated molecular weights of 69.0 kDa and 68.9 kDa and pI's of 9.11 and 9.03, respectively. A comparison of these two VASA deduced protein sequences showed that only 6 of the 622 amino acids differed. The deduced sequences of Pw-VASA-2n and Pw-VASA-3n contained eight consensus sequences characteristic of the DEAD-box protein family and their N-terminal regions contained four arginine-glycine-glycine (RGG) motifs. These two lung fluke VASA-like proteins were more similar to those of other VASA proteins than to those of other DEAD-family proteins isolated from several organisms (planarian, zebra fish, mouse, and human). vasa homologous gene transcription and VASA protein expressions in triploid type lung flukes was slightly stronger than in the diploid type. Immunostaining showed that testes and a portion of the ovaries of both diploid and triploid lung flukes reacted strongly to anti-Pw-VASA antibody.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.