• Title/Summary/Keyword: AT valve body

Search Result 102, Processing Time 0.02 seconds

Thermo-mechanical stress analysis of feed-water valves in nuclear power plants

  • Li, Wen-qing;Zhao, Lei;Yue, Yang;Wu, Jia-yi;Jin, Zhi-jiang;Qian, Jin-yuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.849-859
    • /
    • 2022
  • Feed-water valves (FWVs) are used to regulate the flow rate of water entering steam generators, which are very important devices in nuclear power plants. Due to the working environment of relatively high pressure and temperature, there is strength failure problem of valve body in some cases. Based on the thermo-fluid-solid coupling model, the valve body stress of the feed-water valve in the opening process is investigated. The flow field characteristics inside the valve and temperature change of the valve body with time are studied. The stress analysis of the valve body is carried out considering mechanical stress and thermal stress comprehensively. The results show that the area with relatively high-velocity area moves gradually from the bottom of the cross section to the top of the cross section with the increase of the opening degree. The whole valve body reaches the same temperature of 250 ℃ at the time of 1894 s. The maximum stress of the valve body meets the design requirements by stress assessment. This work can be referred for the design of FWVs and other similar valves.

A Study on the Lubrication Flow Distribution in a Six-speed Automatic Transmission Valve Body (6속 자동변속기 밸브바디의 윤활오일유량 분배 특성 연구)

  • Kim, Jin-Yong;Na, Byung-Chul;Lee, Kye-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In general, a valve body of the automatic transmission(AT) is controlled by the clutch, the brake and lubricating oil flow in a hydraulic system and lubricant flow for each valve can be adjusted independently. To increase the lifetime of AT, the lubrication flow rate in a valve body for a 6 speed AT based parallel hybrid electric vehicle must be provided with proper oil distribution and control. In this study, we carried out several experiments without the inner parts of AT and with a AT assembly. The variation of the flow rate on oil temperature and pressure between an oil supply port and the outlets of the lubrication port was evaluated and analyzed. In the case of AT without the inner parts, it was evident that as the oil required for an operation of the clutch and brake was discharged from the outlet port, the flow rate from each lubrication port is decreased. However, the flow rate of the AT assembly was slightly increased. In addition, the lubrication flow rate was increased with increasing the oil temperature, and also it was reduced with increasing the oil pressure. Details of the resulting data are discussed.

Detecting the screw-assembly state of a valve-body using the AR method (AR 방식을 이용한 밸브바디의 나사 조립 상태 검지)

  • Kang, Moon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • In this study, an augmented reality (AR) app that detects the screw-assembly state of a car valve-body and assists the assembly work is developed and the effectiveness of the app is shown through testing. The app creates the contents indicating the screw-assembly position and order, and the screw-assembly state. Then, the contents are registrated onto the valve-body image on a smart-phone screen to be shown to the worker during assembly. To this end, the features are extracted from the 2D image of the valve-body and the location of the valve-body is tracked. By extracting the areas where the screws are to be assembled, and periodically determining the luminance of these areas, it is checked whether the screws are assembled in order at the predetermined position of the valve-body. When an error is detected during assembly, a warning sound is notified to the worker, and the worker can check the assembly state on the smart-phone screen and handle the error, immediately. Study results found that it takes about 65 ms to detect the assembly state of the five screws, and the assembly state is detected without error for 1 hour.

Aortic Periannular Abscess Invading into the Central Fibrous Body, Mitral Valve, and Tricuspid Valve

  • Oh, Hyun Kong;Kim, Nan Yeol;Kang, Min-Woong;Kang, Shin Kwang;Yu, Jae Hyeon;Lim, Seung Pyung;Choi, Jae Sung;Na, Myung Hoon
    • Journal of Chest Surgery
    • /
    • v.47 no.3
    • /
    • pp.283-286
    • /
    • 2014
  • A 61-year-old man was diagnosed with aortic stenoinsufficiency with periannular abscess, which involved the aortic root of noncoronary sinus (NCS) that invaded down to the central fibrous body, whole membranous septum, mitral valve (MV), and tricuspid valve (TV). The open complete debridement was executed from the aortic annulus at NCS down to the central fibrous body and annulus of the MV and the TV, followed by the left ventricular outflow tract reconstruction with implantation of a mechanical aortic valve by using a leaflet of the half-folded elliptical bovine pericardial patch. Another leaflet of this patch was used for the repair of the right atrial wall with a defect and the TV.

Endurance of Pneumatic Valve with a Multi-bender PZT Actuator (적층 벤더형 압전식 공압밸브의 내구 특성)

  • Yun, So-Nam;Park, In-Sub
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.31-36
    • /
    • 2014
  • In this paper, pneumatic valve which consists of valve body, valve controller, nozzle and a multi-bender PZT actuator was suggested and fabricated. The fabricated pneumatic valve was experimented for performance evaluation. From the experimental results, we know that the flow rate of the suggested valve is 23 lpm at the pressure difference of 1bar and the maximum flow rate is 30 lpm at the pressure difference of 4 bar. The flow rates after endurance test of 9.8 million were 22.57 lpm and 28.62 lpm at the pressure difference of 1bar and 4bar, respectably. Finally, it was verified that the B10 life of the suggested pneumatic valve is over 50 million.

The Analysis and Design of Electro-pneumatic Servo Valve (공기압 Servo Valve 설계 및 해석)

  • Ko, J.H.;Ryu, D.L.;Lee, J.H.;Kim, Y.S.;Kim, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1210-1214
    • /
    • 2008
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signal into pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristic, no air leakage at null, and can be fabricated at a low-cost. The first objective of this research is to design and fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In this paper, we has been modeled as a system consisting of coupled electro-mechanic and mechanical subsystems. The appropriateness of the model has been verified by simulation. The simulation model resolves the valve body motion and the solenoid current at high accuracy. Also, we are calculate the displacement of spool and computed results show winding currents, magnetic actuator force, flux density line, displacement, velocity, back EMF, eddy current etc.

  • PDF

A Study on the Flow Analysis of Impeller type Measuring Valve according to Differential Pressure at Inlet and Outlet (임펠러 타입 계량 밸브 입·출구 차압에 따른 유동해석에 관한 연구)

  • Tea-Joon Kim;Chung-Seob Yi;Chi-Woo Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.381-387
    • /
    • 2023
  • This study conducts the flow analysis on the basis of the impeller RPM of water measuring valve and differential pressure at valve inlet and outlet. The software used for the flow analysis is STAR-CCM+. In terms of the structure of the measuring valve, it has an impeller installed inside, and a metering chamber has inlet and outlet holes. The flow analysis on the water measuring valve drew the following conclusions: The flow rate and flow coefficient distribution according to the impeller RPM and differential pressure were on the linear increase. Regarding the flow field in the valve, the increased differential pressure had the highest velocity distribution, and complex flow field was generated in the measuring chamber. In particular, since the path between the inlet and outlet holes in the measuring chamber and the valve body was narrow, there was a section that had flow field interference. Given that, it showed the feature of the valve used for water measuring on the basis of the impeller RPM.

Analysis of Dynamics Characteristics for Friction Elements in Automatic Transmission (자동변속기 마찰요소의 동특성 해석)

  • 최영종;정우진;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.9-19
    • /
    • 1997
  • In this paper, the modeling and analysis of dynamic characteristics has been carried out for friction clutches and brakes in an automatic transmission. From the operating oil pressure generated by the valve-body, time delay by check valve and the movement of piston has been examined. Also torque capacity and torque transferred at the clutch is studied. Heat capacity and temperature distribution at the reaction plate of clutch are codeled by time-dependent, nonhomogeneous partial differential equation, and brake torque, brake time, and the amount of heat generated are investigated. It is found that the time delay at the check valve is very short but dominant at the spool.

  • PDF

Pressure Transfer Analysis and Experimental Verification of Thin Plate Spring Type Check Valve Considering P-delta Effect (P-delta 효과를 고려한 박판 스프링 형 체크밸브의 압력전달 해석 및 실험적 검증)

  • Hwang, Yong-Ha;Nguyen, Anh Phuc;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.32-39
    • /
    • 2018
  • In this paper, the calculation of the theoretical pressure transfer ratio due to the deformation of the thin-plate spring type check valve applied to the small piezoelectric-hydraulic pump was carried out. A thin-plate check valve is a flexible body that is deformed by an external force. The deformation of the check valve affects the rate at which the chamber pressure is transferred to the load pressure. The theoretical pressure transfer ratio for each model was calculated to compare the difference between the assumption that the thin-plate check valve is a rigid body and that of the flexible body model. The P-delta effect was considered for the calculation of the pressure transfer ratio of the flexible check valve model. In addition, a verification test for the calculated pressure transfer ratio obtained by considering the deformation of the flexible check valve model was carried out. The load pressure was measured by applying a thin-plate and ball-thin plate spring type check valves, respectively. The experimental pressure transfer ratio was calculated using the respective load pressure obtained from the experiments. The validity of the pressure transfer analysis of the check valve, taking into consideration the P-delta effect, was verified by comparing it with the theoretically calculated pressure transfer ratio.

A Numerical Study on the Flow of a Model Intake Port Using Low Reynolds Number (저 레이놀즈수 k-ε난류모형에 의하 축대칭 모형포트 유동의 수치해석적 연구)

  • Hong, Y.J.;Kim, C.S.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 1994
  • In this study, flow of a model intake port/valve system is analyzed by using low Reynolds number $k-{\varepsilon}$ model. Discharge coefficient was obtained from computational results for the various cases of valve lifts. Discharge coefficient becomes maximum when the valve lift is 20mm, and does not increase or decrease in proportional to valve lift. Most of pressure drop and production of turbulent kinetic energy occur at the edge points of the valve and the valve seat Thus, in order to improve discharge coefficient, rounding of edge points in valve and valve seat is recommended. As valve lift is increased, the velocity of the intake jet in the valve passage decreases, and the direction of the jet is more inclined toward the valve seat.

  • PDF