• 제목/요약/키워드: AT power system

검색결과 8,978건 처리시간 0.037초

모선 분리 운영중인 전력계통에 초전도 한류기 적용 효과 및 영향에 관한 연구 (A Study on the Effect of Superconducting Fault Current Limiter in Power System with Separated Bus and Superconducting Fault Current Limiter)

  • 김명현;김진석;임성훈;김재철
    • 조명전기설비학회논문지
    • /
    • 제26권12호
    • /
    • pp.74-79
    • /
    • 2012
  • Currently, separated buses were increased to limit a fault currents in power transmission system. However, separated buses caused bad influences such as a decrease of reliability and stability. Superconducting fault current limiter (SFCL) was proposed to limit a fault current lately and that has many merits beside any other solutions. Therefore, we proposed the install of Superconducting fault current limiter (SFCL) in power transmission system with separated bus. And our proposal was verified by reliability of power system.

제주 행원 풍력 발전 시스템의 역률 개선에 관한 연구 (A study on the power factor improvement of Wind Turbine Generation System at Haeng-Won in Jeju)

  • 박성기;김정웅;강경보;김일환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.375-378
    • /
    • 2003
  • This paper presents a study on the power factor improvement of the Wind turbine Generation System(WTGS) at Haeng-won wind farm in Jeju Island. Vestas WTGS named V47 as a model system is selected in this paper, and has 660 kW Power ratings. In this system, power factor correction is controlled by the conventional method with power condenor bank. So, model system at Haeng-won wind farm has very low power factor in the area of low wind speed, which is from 4 m/s to 6 m/s. This is caused by the power factor correction using power condenser bank To improve the power factor in the area of low wind speed, we used the static var compensator(SVC) using current controlled PWM power converter by IGBT switching device. finally, to verify the profosed method, the results of computer simulation using Psim program are presented to support the discussion.

  • PDF

Investigation of a Hybrid HVDC System with DC Fault Ride-Through and Commutation Failure Mitigation Capability

  • Guo, Chunyi;Zhao, Chengyong;Peng, Maolan;Liu, Wei
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1367-1379
    • /
    • 2015
  • A hybrid HVDC system that is composed of line commutated converter (LCC) at the rectifier side and voltage source converter (VSC) in series with LCC at the inverter side is studied in this paper. The start-up strategy, DC fault ride-through capability, and fault recovery strategy for the hybrid HVDC system are proposed. The steady state and dynamic performances under start-up, AC fault, and DC fault scenarios are analyzed based on a bipolar hybrid HVDC system. Furthermore, the immunity of the LCC inverter in hybrid HVDC to commutation failure is investigated. The simulation results in PSCAD/EMTDC show that the hybrid HVDC system exhibits favorable steady state and dynamic performances, in particular, low susceptibility to commutation failure, excellent DC fault ride-through, and fast fault recovery capability. Results also indicate that the hybrid HVDC system can be a good alternative for large-capacity power transmission over a long distance byoverhead line.

제한된 전원을 사용하는 저전력 시스템 설계 (Design of the low-power system using the limited source)

  • 김도훈;이교성;김용상;박종철;김양모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.163-165
    • /
    • 2003
  • Over the past several years, the application extent of the real-time systems is being expanded with the progress of civilization. An effort to minimize power consumption at the system is being accomplished in several fields from the design of an analog/digital circuit up to the device level Things of this effort have included the power optimum-technique to minimize power consumption at the digital logic circuit and the dynamic managed skill by means o( the decision of the operating system. In this paper, we designed of low power system by using Power-optimized method. As an effective low-power design, we designed the low power system which it has a monitoring system within the main board and a personal computer.

  • PDF

철도 전력공급시스템에서의 고조파전류 확대현상에 관한 연구 (A Study on the Propagation of Harmonic Current in the Traction Power Supply System)

  • 오광해;창상훈;한문섭;이장무;신한순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.908-910
    • /
    • 1998
  • Modern AC electric car has PWM(Pulse Width Modulation) -controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit. As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current. The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

철도 급전시스템에서의 고조파 해석 및 대책 연구 (A Study on the Countermeasures to Suppress Harmonics in the Traction Power Supply System)

  • 오광해;이장무;창상훈;한문섭;김길상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.318-325
    • /
    • 1999
  • Modern AC electric car has PWM(Pulse Width Modulation)-controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit, As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

Characterization and Performance Evaluation of Advanced Aircraft Electric Power Systems

  • Eid, Ahmad;El-Kishky, Hassan;Abdel-Salam, Mazen;El-Mohandes, Mohamed T.
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.563-571
    • /
    • 2010
  • A model of an advanced aircraft electric power system is developed and studied under variable-speed constant-frequency (VSCF) operation. The frequency of the generator's output voltage is varied from 400-Hz to 800-Hz for different loading scenarios. Power conversions are obtained using 12-pulse power converters. To reduce the harmonic contents of the generator output waveforms, two high-pass passive filters are designed and installed one at a time at the generator terminals. The performance of the two passive filters is compared according to their losses and effectiveness. The power quality characteristics of the studied VSCF aircraft electric power system are presented and the effectiveness of the proposed filter is demonstrated through compliance with the newly published aircraft electrical standards MIL-STD-704F.

전기철도 AT급전계통 전력해석을 통한 실계통의 단락전류 분석 (The Analysis of Short Current on Actual System through Power Analysis of AT Feeder System for Electric Railway)

  • 정노건;정호성;구경완;김재문
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1582-1587
    • /
    • 2014
  • In this paper, we perform a modeling for the AT Feeder system in AC electric railway and we utilize the power EMTDC program to implement about AT feeder system modeling. In addition, we study the impedance characteristics of the AT feeder system and calculated fault current and impedance according to the distance due to fault accident. Based on it's result, fault current are compared between calculating the value and simulation value in EMTDC modeling. Impedance of power system is Largest at the middle point of the system and is smallest near autotransformer, and then showed that the fault current is inversely proportional to impedance characteristics.

염전 병행 태양광 발전의 실증과 시뮬레이션 (Salt Farm Parallel Solar Power System:Field tests and Simulations)

  • 박종성;김봉석;김근호;이승민;임철현
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.121-124
    • /
    • 2019
  • In this research, the concept of a salt farm parallel solar power system, which produce salt and electricity at the same site, is proposed for the first time in the world. The concept is that large waterproof plates made by interconnected solar modules are installed at the bottom of the salt farm. The pilot system was successfully installed at a sea shore, and verified its feasibility as a solar power plant. For deeper understanding, simulations for power prediction of the system were carried out and compared with the field test results. The power generation of the salt farm parallel system is comparable to conventional solar power plants. The cooling effect by sea water contributes more to the increase in the crystalline silicon photovoltaic module performance than the absorption loss due to sea water by maintaining certain height above the module.

PSCAD/EMTDC를 이용한 고정속 풍력발전시스템 모델링 및 과도상태 안정화기법 (Fixed speed wind power generation system modeling and transient state stabilization method using PSCAD/EMTDC)

  • 김영주;박대진;;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1178-1179
    • /
    • 2008
  • This paper describes a modeling of fixed speed wind power generation system which comprise of wind turbine, generator and grid. The wind turbine is based on MOD-2, which is IEEE standard wind turbine, and includes a component using wind turbine characteristic equation. Fixed speed induction generator is directly connected to grid, so the variation of wind speed has effects on the electrical torque and electrical output power. Therefore the power control mode pitch control system is necessary for aerodynamic control of the blades. But the power control mode does not operate at the fault condition. So it is required some methods to control the rotor speed at transient state for stabilization of wind power system. In this paper, simulation model of a fixed speed wind power generation system based on the PSCAD/EMTDC is presented and implemented under the real weather conditions. Also, a new pitch control system is proposed to stabilize the wind power system at the fault condition. The validity of the stabilization method is demonstrated with the results produced through sets of simulation.

  • PDF