• 제목/요약/키워드: AT power system

검색결과 8,978건 처리시간 0.047초

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.

Solar Power System의 인버터 토폴로지 및 제어 모드에 따른 안정도 연구 (Stability of Solar Power System on the Control Modes of a Forced-Commutated Inverter and a Line-Commutated Inverter)

  • 이승현;정교범;조보형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.534-537
    • /
    • 1997
  • Solar power systems have become popular in the modem electric energy system. In order to supply the DC power, generated by solar cells, to the electric power system, the solar power system requires DC-to-AC power conversion. A line-commutated inverter or a forced-commutated inverter can be used in the DC-to-AC power conversion. Because of the nonlinear V-I characteristics of the solar cells, multiple operating points determined by the control mode of the inverter exist in the DC V-I state plane of the solar power system. In this paper, the stability of utility-interactive solar power system with a line-commutated inverter is analyzed at various operating points, using the eigenvalue method and the state-plane analysis technique. The stability of a forced-commutated inverter case is also anaiyzed and compared to that of the line-commutated inverter case.

  • PDF

The Overview of a Digital Power System Simulator for Large Power System Analysis

  • Kim, Tae-Kyun;Kim, Yong-Hak;Shin, Jeong-Hoon;Choo, Jin-Boo
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권2호
    • /
    • pp.93-99
    • /
    • 2003
  • This paper deals with the development and testing of a large-scale, realtime digital power system simulator for the Korean Electric Power Corporation. The KEPS Simulation Center is located at KEPCO's research center (KEPRI) in Taejon, South Korea and has been operated since September 2001. The KEPS Simulation Center includes a wide range of off line power system simulation and analysis tools, as well as an advanced realtime digital simulator for the study of large scale AC and DC system performance. Because the application scope of the KEPS realtime simulator is broad and because the network models being considered are significantly larger and more complex than in traditional realtime simulator applications, many developments and tests have been required during the course of the project. In this paper, the authors describe some of these developments and present results from various benchmark tests that have been performed.

Design and Implementation of a Universal System Control Strategy Applicable to VSC-HVDC Systems

  • Zhao, Yue;Shi, Li-bao;Ni, Yi-xin;Xu, Zheng;Yao, Liang-zhong
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.225-233
    • /
    • 2018
  • This paper proposes a universal system control strategy for voltage source converter (VSC) based high voltage direct current (HVDC) systems. The framework of the designed control strategy consists of five layer structures considering the topology and control characteristics of the VSC-HVDC system. The control commands sent from the topmost layer can be transmitted to the next layer based on the existing communication system. When the commands are sent to each substation, the following transmission of commands between the four lower layers are realized using the internal communication system while ignoring the communication delay. This hierarchical control strategy can be easily applied to any VSC-HVDC system with any topology. Furthermore, an integrated controller for each converter is designed and implemented considering all of the possible operating states. The modular-designed integrated controller makes it quite easy to extend its operating states if necessary, and it is available for any kind of VSC. A detailed model of a VSC-HVDC system containing a DC hub is built in the PSCAD/EMTDC environment. Simulation results based on three operating conditions (the start-up process, the voltage margin control method and the master-slave control method) demonstrate the flexibility and validity of the proposed control strategy.

산소분리기술을 사용한 연료전지/순산소연소 발전시스템 해석 (Analysis of Solid Oxide Fuel Cell/Oxy-fuel Combustion Power Generation System Using Oxygen Separation Technology)

  • 박성구;김동섭;손정락;이영덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.51-54
    • /
    • 2008
  • This study aims to devise and analyze a power generation system combining the solid oxide fuel cell and oxy-fuel combustion technology. The fuel cell operates at an elevated pressure, a constituting a SOFC/gas turbine hybrid system. Oxygen is extracted from the high pressure cathode exit gas using ion transport membrane technology and supplied to the oxy-fuel power system. The entire system generates much more power than the fuel cell only system due to increased fuel cell voltage and power addition from oxy-fuel system. More than one third of the power comes out of the oxy-fuel system. The system efficiency is also higher than that of the fuel cell only system. Recovering most of the generated carbon dioxide is major advantage of the system.

  • PDF

Restarting Trains Under Moving Block Signaling - An Expert System Approach

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.96.6-96
    • /
    • 2001
  • A high peak power demand at substations will result under Moving Block Signalling (MBS) when a dense queue of trains begins to start from a complete stop at the same time in an electrified railway system. This may cause the power supply interruption and in turn affect the train service substantially. In a recent study, measures of Starting Time Delay (STD) and Acceleration Rate Limit (ARL) are the possible approaches to reduce the peak power demand on the supply system under MBS. Nevertheless, there is no well-defined relationship between the two measures and peak power demand reduction (PDR). In order to attain a lower peak demand at substations on different traffic conditions and system requirements, an expert system is one of the possible approaches to procure the appropriate use of peak demand reduction measures ...

  • PDF

Identification of the Failure of VFD Heat Sink at Fossil Power Plant

  • Jung, Jine-sung;Lee, Han-sang;Kim, Min-tae;Kim, Eui-hyun
    • Corrosion Science and Technology
    • /
    • 제8권4호
    • /
    • pp.153-156
    • /
    • 2009
  • The water cooling system for VFD (Variable Frequency Drive) of a fossil fuel power plant was reported to be shut down due to a water leak at the metal connection of the heat-sink to the hoses. In order to identify the cause of the failure, the system was visually inspected, and corrosion products were analyzed with SEM equipped with EDX. The failure was observed repeatedly at the nipples of certain location, suggesting galvanic corrosion. In a U-shaped heat sink with two nipples, for inlet and outlet, only one nipple was corrosively damaged at the tip, while the other was not. Most of the corrosion products were observed at the sound nipple and in the filter, identified as $Cu(OH)_2$. Some other corrosion products, composed of mostly $Cu_2O$, were found at the corrosively attacked nipple. A fair amount of Cl was also detected on the surface of the damaged nipple. It was concluded that galvanic corrosion was occurred due to a current leakage over the whole system, and the damage was accelerated by the accumulated chlorine ions in the cooling water.

계통 연계형 풍력발전 시스템의 고조파 저감 및 무효전력 보상 (Reduction of Harmonics and Compensation of Reactive Power about Wind Power Generation System Connected to Grid)

  • 김영민;황종선;김종만;박현철;송승호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.1093-1096
    • /
    • 2002
  • In this paper, a novel multi voltage inverter system is proposed for reductions of harmonics, which can compensate reactive power. At first, we remove capacitor at input side for reactive power compensation. Secondly, by adding DC voltage to the filter capacitor, it can control power factors as lead-phase according to alterations of loads at power reception. Thirdly, if winding and single phase-bridge inverter(auxiliary circuit) is installed to DC power for reduction of harmonic, waveform of output voltages become to 36-steps. Thus, SVC(static var compensator) systems which can reduce harmonics are designed.

  • PDF

데이터 취득 시스템 설계 및 소모 전력 감소에 관한 연구 (A study for the design of data-acquisition system and the reduction of power consumption)

  • 김도훈;이용제;김용상;임상욱;김양모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2705-2707
    • /
    • 2003
  • Over the past several years, the application extent of the real-time systems is being expanded with the progress of civilization. An effort to minimize power consumption at the system is being accomplished in several fields from the design of an analog/digital circuit up to the device level. Things of this effort have included the power optimum-technique to minimize power consumption at the digital logic circuit and the dynamic managed skill by means of the decision of the operating system. In this paper, we designed of low power system by using power-optimized method. As an effective low-power design, we designed the low power system which it has a monitoring system within the main board and a personal computer.

  • PDF

소방 방재설비용 연료전지 발전시스템의 비절연형 고효율 전력변환기 설계 (High Efficiency Power Conversion System of Non Isolated Type Applied in Fuel Cell Generator Used to Fire Prevention Installation)

  • 곽동걸
    • 마이크로전자및패키징학회지
    • /
    • 제13권3호
    • /
    • pp.19-26
    • /
    • 2006
  • 본 논문은 예비 전력공급설비의 일환으로 비상시 소방 방재설비에 적용되는 연료전지 발전시스템에 대해 연구된다. 제안된 시스템은 비상시 상용 전력공급의 차단에 대비하여 소방 방재설비들의 전력공급원으로 이용된다. 연료전지 발전시스템에서 가장 손실이 큰 부분은 전력변환부이다. 또한 전력변환부의 손실은 전력변환을 위해 사용된 전력용 반도체 스위치의 스위칭 손실로 주어진다. 본 논문에서는 이러한 연료전지 발전시스템의 출력을 최대한 활용하기 위하여 부분공진의 기법이 적용된 고효율의 전력변환기가 제안된다. 또한 연료전지 발전시스템에 적용된 고효율 전력변환기는 비절연형으로 설계되고 사용된 제어스위치들은 새로운 소프트 스위칭 회로토폴로지에 의해 무손실로 동작되어 시스템의 효율을 증대시킨다. 다양한 컴퓨터 시뮬레이션과 특성실험을 통해 이론적 해석의 타당성이 입증된다.

  • PDF