• Title/Summary/Keyword: AT&TI

Search Result 6,071, Processing Time 0.031 seconds

Formation Mechanism of Ultrafine $TiO_2$ Powders from Aqueous $TiOCl_2$ Solution by Homogeneous Precipitation Process at Low Temperature (저온 균일침전법으로 $TiOCl_2$ 수용액에서 얻은 $TiO_2$ 초미분체의 형성기구)

  • 김선재;이희균;박순동;전치중;이창규;김흥회;이은구
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.473-478
    • /
    • 2000
  • The TiO2 powder with the values of the large specific surface area more than 150$m^2$/g has been prepared with the homogeneous precipitation process below 5$0^{\circ}C$ and its formation mechanism was investigated using the SEM, TEM and Raman Spectroscopy. With the spontaneous hydrolysis of aqueous TiOCl2 solutions, all the precipitates were fully and homogeneously crystallized with the rutile TiO2 phase simply by heating, which as transformed to the anatase TiO2 phase as increasing the addition of SO42- ions to the aqueous TiOCl2 solution. The precipitates were formed with spherical secondary particles which consisted of acicular, spherical and mixed primary particles corresponding to the rutile, anatase and mixed phases, respectively. It can be thought that the formation and phase determination of crystalline TiO2 powders even at ambient temperature would be related with the existence of the capillary force. This force might be varied depending on the shape change of the primary particles.

  • PDF

Influence of TiO2 Buffer Layer on the Electrical and Optical Properties of IGZO/TiO2 Bi-layered Films (TiO2 완충층이 IGZO/TiO2 이중층 박막의 전기적, 광학적 성질에 미치는 영향)

  • Moon, Hyun-Joo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.291-295
    • /
    • 2015
  • IGZO single layer and $IGZO/TiO_2$ bi-layered films were deposited on glass substrate at room temperature with radio frequency magnetron sputtering to investigate the effect of $TiO_2$ buffer layer on the electrical and optical properties of the films. For all deposition, the thickness of IGZO and $TiO_2$ Buffer layer was kept at 100 and 5 nm, respectively. In a comparison of figure of merit, IGZO films with a 5-nm-thick $TiO_2$ buffer layer show the higher figure of merit ($8.40{\times}10^{-5}{\Omega}^{-1}$) than that of the IGZO single layer films ($6.23{\times}10^{-5}{\Omega}^{-1}$) due to the enhanced optical transmittance and the decreased sheet resistance of the films. The observed results mean that a 5 nm thick $TiO_2$ buffer layer in the $IGZO/TiO_2$ films results in better electrical and optical performance than conventional IGZO single layer films.

Effect of Addition of Other Componene (B4C, Mn, TiB2, B) on TiC-Ni3Al Cermet (TiC-Ni3Al Cermet에 타성분(B4C, Mn, TiB2, B) 첨가의 영향)

  • 김지헌;이완재
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.352-358
    • /
    • 2002
  • The effects of boron or manganese added as $B_4C$, Mn, $TiB_2$, B on TiC-30vo1.%$Ni_3Al$ cermet sintered at 1380 and $1400^{\circ}C$ for 1 hour, were examined in relation with shrinkage, relative density, microstructure, lattice parameter, hardness and fracture toughness ($K_{IC}$). The results are summarized as follows: 1) The highest shrink-age showed about 30.5% in the specimen added B$_4$C and the maximum relative density was about 99% in the specimen added $TiB_2$; 2) The grains of TiC were grown during sintering and made the surrounding structure by adding boron and manganese. The largest grain size showed about $2.8\mutextrm{m}$ in the specimen with boron sintered at $1400^{\circ}C$;3) The lattice parameter of TiC was about $4.325\AA$ and $Ni_3Al$ about $3.592\AA$ by adding other elements; 4) The highest hardness was about $1100kgf/\textrm{mm}^2$ in the specimen with B4C; 5) The fracture toughness ($K_{IC}$) showed about $15MNm^{-3/2}$ in the specimen added $TiB_2$.

Phase Transformation Properties of Cu/TiO2 Photocatalyst Powders Fabricated by Mechanical Alloying (기계적 합금화법으로 제조된 Cu/TiO2 촉매용 분말의 상변화 특성)

  • 안인섭;배승열;이영란;고봉석
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.110-115
    • /
    • 2002
  • In order to obtain the nano size $10wt%Cu-TiO_2$composite powders by mechanical alloying method for useful composite catalysis, the effects of mechanical alloying time on the formationof $10wt%Cu-TiO_2$ composite powders were analyzed. The phase transformation behaviors were experimented as the heat treating temperature increased. Homogeneous 10wt% Cu-rutile type $TiO_2$composite powders were synthesized in 40 hours by mechanical alloying. After 60 hours mechanical alloying 50 nm size $TiO_2$powders were obtained. Both the phase of mechanically alloyed 10 wt% $Cu-TiO_2$ and pure $TiO_2$ powders were not transformed to anatase after annealing at the temperature range between 350 to 500 $^{\circ}C$. The intermetallic compound of $Cu_2Ti_4$O was formed after 10 hours mechanical alloying, however it could be considered that this intemetallic phase dose not prevent the transformation of rutile $TiO_2$ to the anatase phase after heat treatment at the temperature between 350 and $550^{\circ}C$.

Effects of Amorphous Si3N4 Phase on the Mechanical Properties of Ti-Al-Si-N Nanocomposite Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막 내 존재하는 Si3N4 비정질상이 기계적 특성에 미치는 영향)

  • An, Eun-Sol;Jang, Jae-Ho;Park, In-Uk;Jeong, U-Chang;Kim, Gwang-Ho;Park, Yong-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.304-304
    • /
    • 2014
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti,Al)N crystallites and amorphous $Si_3N_4$ by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film having the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of $nc-(Ti,Al)N/a-Si_3N_4$.

  • PDF

Precipitation of L21-type Ni2AlTi Phase in B2-type Intermetallic Compounds NiTi (B2형 금속간화합물 NiTi 중에 L21형 Ni2AlTi상의 석출)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.420-424
    • /
    • 2007
  • Precipitation behavior has been studied in NiTi-based ordered alloy using transmission electron microscopy. The hardness after solution treatment is high in NiTi alloy suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1-type$ $Ni_2AlTi$ precipitates keep a lattice coherency with the NiTi matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of $NiTi-Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.3% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

The Study of Formation of Ti-silicide deposited with composite target(I) (Composite target으로 증착된 Ti-silicide의 형성에 관한 연구(I))

  • Choe, Jin-Seok;Gang, Seong-Geon;Hwang, Yu-Sang;Baek, Su-Hyeon;Kim, Yeong-Nam;Jeong, Jae-Gyeong;Mun, Hwan-Gu;Sim, Tae-Eon;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.168-174
    • /
    • 1991
  • Ti-silicide was deposited by sputtering the composite target($TiSi_{2.6}$) on single-Si wafers and oxide on them. The heat treatment temperatures by rapid thermal annealing(RTA) have been varied in the range of $600-850^{\circ}C$ for 20seconds. It was not until RTA temperature was $800^{\circ}C$ that a stable $TiSi_2$ was formed, and the value of resistivity of that phase was $27~29{\mu}{\Omega}-cm$, which seems a little higher than that formed by the reactive method. The result of x-ray diffraction peals showed that till $750^{\circ}C$, C49 $TiSi_2$ phase was dominant, but at $800^{\circ}C$, at last, the phase was transformed into a stable C54 $TiSi_2$ phase. And, the result of x-ray photoeletron spectroscopy(XPS) measurements showed that the composition ratio of Ti and Si was 2 1 in the case of specimens treated at $800^{\circ}C$, The surface roughness of $TiSi_2$, which was condidered a weak point, was improved to a superior value of $17{\pm}1nm$, therefore increasing the possibility of applying $TiSi_2$ to semiconductor devices.

  • PDF

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

The Electrical properties of Al/TiN/Ti Contact at Submicron contact(2) (Al/TiN/Ti 전극의 Submicron contact에서의 전기적특성(2))

  • Lee, C.J.;Eum, M.J.;Ra, Y.C.;Kim, S.J.;Sung, M.Y.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1069-1071
    • /
    • 1995
  • The electrical properties of Al/TiN/Ti contact are investigated at submicron contacts. The contact resistance and contact leakage current are dependent on metallization, surface dopant concentration, semiconductor surface treatment and contact plug ion implantation. In this paper, the contact resistance and contact leakage current are studied according to surface dopant concentration, semiconductor surface treatment and contact plug ion implantation at 0.8 micron contact. The contact resistance and contact leakage current increases with increasing substrate ion concentration. HF cleaning represents high contact resistance but low contact leakage current while CDE cleaning represents low contact resistance but high contact leakage current. Contact plug ion implantation decreases contact resistance but increases contact leakage current. Specially, RTA represents good electrical properties.

  • PDF

RRR Behavior due to Fatigue Damage in NbTi Superconductor Cable (피로손상을 받은 NbTi초전도 선재의 RRR거동패동)

  • 신형섭;배영준;하동우;오상수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In order to investigate the effect of fatigue damage on the properties of RRR in this study. fatigue tests at room temperature and residual resistivity measurement tests at 12K were carried out using annealed 9 strand Cu-Ni/NbTi/Cu composite cables Through fatigue tests of NbTi composite cables. a conventional S-N curve could be obtained even though there existed a possibility of fretting among strands, From the resistivity measurement of a NbTi strand after fatigue test, it was found that the RRR of xii·gin strand for annealed cables was 3 times more than that for as-received one. With increasing of fatigue cycles at a sress amplitude level. the RRR decreased. which was resulted from the accumulation of damage such as lattice defects and dislocation within the Cu stabilizer.

  • PDF