본 논문에서는 U-Net 기반의 semantic segmentation 방법에서 정확도를 개선하기 위한 Atrous Residual U-Net (AR-UNet)을 제안하였다. U-Net은 의료 영상 분석, 자율주행 자동차, 원격 감지 영상 등의 분야에서 주로 사용된다. 기존 U-Net은 인코더 부분에서 컨볼루션 계층 수가 적어 추출되는 특징이 부족하다. 추출된 특징은 객체의 범주를 분류하는 데 필수적이며, 부족할 경우 분할 정확도를 저하시키는 문제를 초래한다. 따라서 이 문제를 개선하기 위해 인코더에 residual learning과 ASPP를 활용한 AR-UNet을 제안하였다. Residual learning은 특징 추출 능력을 개선하고, 연속적인 컨볼루션으로 발생하는 특징 손실과 기울기 소실 문제 방지에 효과적이다. 또한 ASPP는 특징맵의 해상도를 줄이지 않고 추가적인 특징 추출이 가능하다. 실험은 Cityscapes 데이터셋으로 AR-UNet의 효과를 검증하였다. 실험 결과는 AR-UNet이 기존 U-Net과 비교하여 향상된 분할 결과를 보였다. 이를 통해 AR-UNet은 정확도가 중요한 여러 응용 분야의 발전에 기여할 수 있다.
The learning-based multiview stereo (MVS) methods for three-dimensional (3D) reconstruction generally use 3D volumes for depth inference. The quality of the reconstructed depth maps and the corresponding point clouds is directly influenced by the spatial resolution of the 3D volume. Consequently, these methods produce point clouds with sparse local regions because of the lack of the memory required to encode a high volume of information. Here, we apply the atrous spatial pyramid pooling (ASPP) module in MVS methods to obtain dense feature maps with multiscale, long-range, contextual information using high receptive fields. For a given 3D volume with the same spatial resolution as that in the MVS methods, the dense feature maps from the ASPP module encoded with superior information can produce dense point clouds without a high memory footprint. Furthermore, we propose a 3D loss for training the MVS networks, which improves the predicted depth values by 24.44%. The ASPP module provides state-of-the-art qualitative results by constructing relatively dense point clouds, which improves the DTU MVS dataset benchmarks by 2.25% compared with those achieved in the previous MVS methods.
본 논문에서는 Convolutional Neural Network(CNN)를 이용한 위성 영상 변화탐지 알고리즘을 제안한다. 우선 EfficientNet 기반의 대칭 인코더-디코더 구조의 변화탐지 네트워크를 구성한다. 그리고 디코더 단에 ASPP 모듈을 추가하여 넓은 수용영역을 갖는 특징 정보를 통해 변화지도(change map)를 복원한다. 실험 결과를 통해 검출 성능 및 연산 효율성이 기존 기법보다 우수함을 보인다.
This presentation reviewed the dietary vitamin C requirements in main marine finfish culture in Korea. In experiment I, an II-week feeding trial was conducted to study the effects of the different levels of dietary vitamin C on growth, tissue ascorbic acid concentrations and histopathological changes in parrot fish. Casein and gelatin based diets were formulated to contain 0, 60, 120, 240, 480 and 2000mg L-ascorbic acid (AA)kg diets on Ah equivalent basis in the form of L-ascorbyl-2-monophosphate (AMP), 60 and 240 mg AA/kg diet as L-ascorbic acid. Broken line analysis of weight gain indicated that the dietary vitamin C requirement of parrot fish is l18$\pm$12 mg AA/kg diet in the form of L-ascorbyl-2-monophosphate for maximum growth. In experiment II, a 12-week experiment was conducted to compare L-ascorbyl-2-monophosphate-Ca (AMP-Ca) with L-ascorbyl-2-monophosphate-Na/Ca (AMP-Na/Ca) for supplying the dietary vitamin C for juvenile Korean rockfish Sebastes schlegeli. Fish were fed one of 11 semi-purified diets containing equivalent of 0, 50, 100, 200, 400, and 800 mg ascorbic acid (AA)kg diet in the form of AMP-Ca or AMP-Na/Ca for 12 weeks. Broken line analysis of weight gain indicated that the dietary vitamin C requirement of Korean rockfish is 100 mg AA/kg diet in the form of AMP-Na/Ca, and 117 nag AA/kg diet in the form of AMP-Ca. In experiment III, a 12-week experiment was conducted to study the effects of different dietary levels of vitamin C, L-ascorbyl-2-polyphosphate (ASPP), on growth and tissue vitamin C concentrations in juvenile olive flounder. Fish were fed one of six semi-purified diets containing an equivalent of 0, 25, 50, 75, 150, or 1500 mg ascorbic acid (AA) kg 1 diet in the form of ASPP for 12 weeks. Based on broken line analyses for WG and PER, the optimum dietary levels of vitamin C were 91 and 93 mg AA/kg diet, respectively.
Regardless of advances in treatment modalities with the invention of newer therapies, breast cancer remains a major health problem with respect to its diagnosis, treatment and management. This female malignancy with its tremendous heterogeneous nature is linked to high incidence and mortality rates, especially in developing region of the world. It is the malignancy composed of distinct biological subtypes with diverse clinical, pathological, molecular and genetic features as well as different therapeutic responsiveness and outcomes. This inconsistency can be partially overcome by finding novel molecular markers with biological significance. In recent years, newer technologies help us to indentify distinct biomarkers and increase our understanding of the molecular basis of breast cancer. However, certain issues need to be resolved that limit the application of gene expression profiling to current clinical practice. Despite the complex nature of gene expression patterns of cDNAs in microarrays, there are some innovative regulatory molecules and functional pathways that allow us to predict breast cancer behavior in the clinic and provide new targets for breast cancer treatment. This review describes the landscape of different molecular markers with particular spotlight on vitamin D signaling pathway and apoptotic specific protein of p53 (ASPP) family members in breast cancer.
비닐계 단량체인 아크릴로니트릴과 스티렌을 E-beam 전조사법에 의해 폴리프로필렌 섬유에 그라프트 반응시켜 PP-g-(AN/St) 공중합체를 제조한 후 아미드옥심기와 슬폰기를 도입하여 이관능성 이온교환섬유를 제조하였다. 그라프트율은 단량체 내에 아크릴로니트릴의 조성이 감소할수록 증가하였으며 최대 101.1%이었고 최대 아미드옥심화율은 7.2 mmol/g이었다. 또한 섬유상 이온교환체의 초기 열분해 온도는 120 ${\circ}C$ 이었고 함수율은 공중합체 내에 아미드옥심화율이 증가할수록 감소하였고 슬폰화율이 증가할수록 증가하는 경향을 나타냈다. APP-g-AN, SPP-g-St, ASPP-g-(AN/St) 이온교환체의 우라늄 흡착량은 각각 12.4, 34, 38mg/g이었으며 최적 흡착시간은 약 50시간이었다. 우라늄 흡착 실험결과, 본 실험에서 합성한 이온교환체 ASPP-g-(AN/St)는 $UO_2^{2+}$에 대하여 우수한 성능을 보였다.
본 논문은 컨볼루션 신경망으로 이루어진 학습 모델을 통해 스테레오 영상의 깊이영상 생성 알고리즘을 제안한다. 제안하는 알고리즘은 좌, 우 시차 영상을 입력으로 받아 각 시차영상의 주요 특징을 추출하는 특징 추출부와 추출된 특징을 이용하여 시차 정보를 학습하는 깊이 학습부로 구성된다. 우선 특징 추출부는 2D CNN 계층들로 이루어진 익셉션 모듈(xception module) 및 ASPP 모듈(atrous spatial pyramid pooling) module을 통해 각각의 시차영상에 대한 특징맵을 추출한다. 그 후 각 시차에 대한 특징 맵을 시차에 따라 3차원 형태로 쌓아 3D CNN을 통해 깊이 추정 가중치를 학습하는 깊이 학습부를 거친 후 깊이 영상을 추정한다. 제안하는 알고리즘은 객체 영역에 대해 기존의 다른 학습 알고리즘들 보다 정확한 깊이를 추정하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권1호
/
pp.60-79
/
2022
The U-Net architecture-based segmentation models attained remarkable performance in numerous medical image segmentation missions like skin lesion segmentation. Nevertheless, the resolution gradually decreases and the loss of spatial information increases with deeper network. The fusion of adjacent layers is not enough to make up for the lost spatial information, thus resulting in errors of segmentation boundary so as to decline the accuracy of segmentation. To tackle the issue, we propose a new deep learning-based segmentation model. In the decoding stage, the feature channels of each decoding unit are concatenated with all the feature channels of the upper coding unit. Which is done in order to ensure the segmentation effect by integrating spatial and semantic information, and promotes the robustness and generalization of our model by combining the atrous spatial pyramid pooling (ASPP) module and channel attention module (CAM). Extensive experiments on ISIC2016 and ISIC2017 common datasets proved that our model implements well and outperforms compared segmentation models for skin lesion segmentation.
Jung, Ju Yeon;Lee, Su Rim;Kim, Sunhong;Chi, Seung Wook;Bae, Kwang-Hee;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo
Journal of Microbiology and Biotechnology
/
제24권5호
/
pp.714-718
/
2014
Apoptosis is the process of programmed cell death executed by specific proteases, the caspases, which mediate the cleavage of various vital proteins. Elucidating the consequences of this endoproteolytic cleavage is crucial to understanding cell death and other related biological processes. Although a number of possible roles for caspase-6 have been proposed, the identities and functions of proteins that interact with caspase-6 remain uncertain. In this study, we established a cell line expressing tandem affinity purification (TAP)-tagged caspase- 6 and then used LC-MS/MS proteomic analysis to analyze the caspase-6 interactome. Eight candidate caspase-6-interacting proteins were identified. Of these, five proteins (hnRNP-M, DHX38, ASPP2, MTA2, and UACA) were subsequently examined by co-immunoprecipitation for interactions with caspase-6. Thus, we identified two novel members of the caspase-6 interactome: hnRNP-M and MTA2.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.