• Title/Summary/Keyword: ASHRAE Model

Search Result 30, Processing Time 0.022 seconds

The analysis of amount of solar irradiation of vertical and horizontal surface per azimuth (방위별 수직면, 수평면 일사량에 관한 연구)

  • Yoo, Ho-Chun;Shin, In-Hwan;Hwang, Hyun-Suk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.274-277
    • /
    • 2011
  • We measured a solar irradiation of vertical and horizontal surface per azimuth in southern area of Korea using pyrheliometer. In comparison with the provided data from ASHRAE and CIBSE, the average amount of solar irradiation has much variation of 10 to 150% in reference with north direction. In the clear day, the measured value has much difference with the value of ASHRAE and there is similar trend in case of CIBSE. The reason why amount of irradiation of clear day is differ from the average value, is able to be assumed that the value of ASHRAE and CIRSE is made of assumption based on clear days. The result of analysis of ASHRAE and CIBSE values according to the amount irradiation value for vertical and horizontal surface per azimuth using the MBE, RSME, and t-Statistic show that the CIBSE value has more reliability for the MBE, RMSE, and t-Statistic values than ASHRAE value.

  • PDF

New mathematical approach to determine solar radiation for the southwestern coastline of Pakistan

  • Atteeq Razzak;Zaheer Uddin;M. Jawed Iqbal
    • Advances in Energy Research
    • /
    • v.8 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Solar Energy is the energy of solar radiation carried by them in the form of heat and light. It can be converted into electricity. Solar potential depends on the site's atmosphere; the solar energy distribution depends on many factors, e.g., turbidity, cloud types, pollution levels, solar altitude, etc. We estimated solar radiation with the help of the Ashrae clear-sky model for three locations in Pakistan, namely Pasni, Gwadar, and Jiwani. As these locations are close to each other as compared to the distance between the sun and earth, therefore a slight change of latitude and longitude does not make any difference in the calculation of direct beam solar radiation (BSR), diffuse solar radiation (DSR), and global solar radiation (GSR). A modified formula for declination angle is also developed and presented. We also created two different models for Ashrae constants. The values of these constants are compared with the standard Ashrae Model. A good agreement is observed when we used these constants to calculate BSR, DSR, GSR, the Root mean square error (RMSE), Mean Absolute error (MABE), Mean Absolute percent error (MAPE), and chisquare (χ2) values are in acceptance range, indicating the validity of the models.

Solar Absorption System Analysis with Spreadsheet Models (태양열 이용 흡수식 냉난방시스템의 스프레드쉬트 모델)

  • Choi, Hong-Kyu;Fazzolari, Rocco A.
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.15-24
    • /
    • 1992
  • An hourly simulation model of a solar LiBr-water absorption cooling and heating system (for brevity, solar absorption system) is presented, based on SuperCalc spreadsheet computational procedures. This paper demonstrates the value of using spreadsheet simulation techniques by examining the thermal performances of a solar absorption system. The hourly heating and cooling coil loads for a typical office building in Tucson, Arizona are modeled and calculated using ASHRAE methods. The details of the algorithms for the components and control schemes are presented. Two case studies are also presented using real system parameters.

  • PDF

A Comparison of the ASHRAE Simplified Energy Analysis Procedure with the HASP/ACLD Results (간이 에너지 계산법과 동적 열부하 계산법의 비교 연구)

  • Kim, D.C.;Choi, J.H.;Won, Y.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.3
    • /
    • pp.210-218
    • /
    • 1989
  • The ASHRAE Simplified Energy Analysis Procedure using the Modified Bin Method(SEAP) is compared with the hourly calculation program, HASP/ACLD. The HASP/ACLD model office building with VAV system in Seoul is used as the basis for comparison. And the parameters considered are glass to wall area ratio and internal heat gains. The results show that SEAP predictions of annual energy use agree with HASP/ACLD predictions within 5% deviation. But there is a large difference in cooling and heating energy as glass to wall area ratio is varied. The SEAP cooling energy is 65-85% and the heating energy is 104-160% of the HASP/ACLD results. This is probably due to the solar heat gain data. the data related to the SEAP must be developed prior to use it.

  • PDF

Short-Term Load Prediction Using Artificial Neural Network Models (인공신경망을 이용한 건물의 단기 부하 예측 모델)

  • Jeon, Byung Ki;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.497-503
    • /
    • 2017
  • In recent years, studies on the prediction of building load using Artificial Neural Network (ANN) models have been actively conducted in the field of building energy In general, building loads predicted by ANN models show a sharp deviation unless large data sets are used for learning. On the other hands, some of the input data are hard to be acquired by common measuring devices. In this work, we estimate daily building loads with a limited number of input data and fewer pastdatasets (3 to 10 days). The proposed model with fewer input data gave satisfactory results as regards to the ASHRAE Guide Line showing 21% in CVRMSE and -3.23% in MBE. However, the level of accuracy cannot be enhanced since data used for learning are insufficient and the typical ANN models cannot account for thermal capacity effects of the building. An attempt proposed in this work is that learning procersses are sequenced frequrently and past data are accumulated for performance improvement. As a result, the model met the guidelines provided by ASHRAE, DOE, and IPMVP with by 17%, -1.4% in CVRMSE and MBE, respectively.

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy;Baharuddin Hamzah;Ria Wikantari;Rosady Mulyadi
    • Architectural research
    • /
    • v.25 no.4
    • /
    • pp.73-84
    • /
    • 2023
  • Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.

Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구)

  • Park, Sang Hoon;Roh, Jang Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.132-145
    • /
    • 2017
  • Shock loss was not applied for the tunnel ventilation of road tunnel in the past. However, pressure losses due to the shock loss can be significant in network double-deck road tunnel in which combining and separating road structures exist. For the optimum ventilation design of network double-deck road tunnel, this study conducted 3D CFD numerical analysis for the shock loss at the combining and separating flows. The CFD model was made with the real-scale model that was the standard section of double-deck road tunnel. The shock loss coefficient of various combining and separating angles and road width was obtained and compared to the existing design values. As a result of the comparison, the shock loss coefficient of the $30^{\circ}$ separating flow model was higher and that of the two-lane combining flow model was lower. Since the combining and separating angles and road width can be important for the design of shock loss estimation, it is considered that this study can provide the accurate design factors for the calculation of ventilation system capacity. In addition, this study conducted 3D CFD analysis in order to calculate the shock loss coefficient of both combining and separating flows at flared intersection, and the result was compared with the design values of ASHRAE. The model that was not widened at the intersection showed three times higher at the most, and the other model that was widened at the intersection resulted two times higher shock loss coefficients.

Generation of monthly averaged horizontal Radiation based on a regional clearness estimating model (우리나라 지역별 청명도 예측 모델을 이용한 월평균 수평면 일사량 산출)

  • Kim, Jin-Hyo;Kim, Min-Hwi;Kwon, Oh-Hyun;Seok, Yoon-Jin;Jeong, Jae-Weon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.72-80
    • /
    • 2010
  • The main thrust of this paper is to investigate a practical way of generating the monthly averaged daily horizontal solar radiation in Korea. For estimating the horizontal solar radiation, the clearness index($K_T$) and the clearness number($C_N$) which are required for the use of Liu and Jordan's model and ASHRAE Clear Sky model were derived based on the measured weather data. Third-order polynomials returning $K_T$ and��$C_N$ for a given location were derived as a function of cloud amount, month, date, latitude and longitude. The predicted monthly averaged daily horizontal solar radiation values were compared with those acquired from the established design weather data. The MBE(Mean Bias Error) and RMSE (Root Mean Squares for Error) between the predicted values and the measured data were near zero. It means that the suggested third-order polynomials for $K_T$ and $C_N$ have good applicability to Liu and Jordan's model and ASHRAE Clear Sky model.

A Study of Simplified Calculation Methods for Outside Vertical Illuminance using VBA (VBA(Visual Basic for Applications)를 활용한 실외 수직면 조도 간이계산법에 관한 연구)

  • Yun, Su-In;Kim, Kang-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.65-72
    • /
    • 2018
  • The purpose of this study is to predict vertical illuminance accurately at the design stage of a building without the help of simulation tools. Comparing two well-known vertical illuminance prediction algorithms with measured values, it is verified that the Igawa model is more consistent with the measured values than the Perez model. Using the DIVA program, we simulated the vertical illuminance at 30-degree intervals from south to north, compared with the vertical illuminance calculated with the Igawa model. The result of calculation values were verified from 120 degrees east to 120 degrees west. The vertical illuminance values with each of three shade devices were calculated using the Igawa model, and compared with the vertical illuminance simulated by DIVA program. As a result, all the errors when installing horizontal / vertical / grid shade divices were included in the error standard specified by ASHRAE.

Development of Simulation Model Based Optimal Start and Stop Control Daily Strategy (시뮬레이션 모델기반 냉난방 설비 일별 최적 기동/정지 제어기법 개발)

  • Lee, Chanwoo;Koo, Junemo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2018
  • This work aims to develop a platform to investigate the effect of operation schedules on the building energy consumption and to derive a simulation model based optimal start and stop daily strategy. An open-source building energy simulation tool DOE2 is used for the engine, and the developed simulation model is validated using ASHRAE guideline 14. The effect of late-start/early-stop operation of HVAC system on the daily building energy consumption was analyzed using the developed simulation model. It was found that about 10% of energy consumption cut was possible using the control strategy for an hour of advance of the stop operation, and about 3% per an hour of delay of the start operation.