• 제목/요약/키워드: ASH

검색결과 6,650건 처리시간 0.029초

Bottom Ash 굵은골재 혼입에 따른 콘크리트의 강도특성에 관한 실험적 연구 (An Experimental Study on Strength Properties of Concrete using Bottom Ash Coarse Aggregate)

  • 장영일;박승범;이준;이병재;민정욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.489-492
    • /
    • 2008
  • 본 연구에서는 공공 및 민간의 전력수요가 증가함에 따라 화력발전소에서 다량으로 발생하고 있는 석탄재의 약 10${\sim}$15%정도를 차지하는 Bottom Ash를 유효재활용하기 위하여 Bottom Ash 굵은골재 혼입에 따른 콘크리트의 기초적 물성 및 강도특성을 분석하였다. 그 결과, Bottom Ash 굵은골재의 혼입률이 증가할수록 슬럼프는 감소하는 경향을 나타내었으며, 혼입하지 않은 경우에 비하여 약 4.5${\sim}$54.2%정도 감소하였다. 이에 비하여 공기량은 Bottom Ash 굵은골재를 혼입함에 따라 거의 영향이 없고 그 차이는 미소한 것으로 나타났다. 블리딩의 경우는 슬럼프의 경향과 유사하였으며 Bottom Ash 굵은골재의 혼입률이 증가함에 따라 초기의 블리딩이 현저하게 감소하였다. 또한, 압축강도는 Bottom Ash 굵은골재의 혼입률이 증가할수록 감소하였으며 혼입률 40%까지는 혼입하지 않은 경우에 비하여 약 1.1${\sim}$5.3%정도 감소하였고, 혼입률 60% 이상에서 급격히 감소하여 압축강도는 Plain의 약 85.2${\sim}$87.7%정도 발현하였다. 따라서, 콘크리트용 굵은골재로서 Bottom Ash 굵은골재를 대량으로 활용하기 위해서는 강도향상의 보강요소를 사용하는 것이 검토되어야 할 것으로 판단된다.

  • PDF

플라이애시를 대량 사용한 콘크리트의 배합설계를 위한 기초적 연구 (A Fundamental Study on the Mix Design in High Volume Fly-Ash Concrete)

  • 심재형;김재환;최희용;강석표;최세진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.641-646
    • /
    • 2001
  • Generally, when Fly-Ash was used as replacement material of cement in concrete, it might occur retardation of setting and hardening. So, it is unable to use a large amount of Fly-Ash as replacement for cement. However, if it is used as replacement material of fine aggregate in concrete, we can use a large amount of Fly-Ash and settle a problem of natural-aggregate exhaustion. Furthermore, engineering properties of High Volume Fly-Ash Concrete Is better than that of plain concrete But, the larger Fly-Ash is replaced, the more fluidity of High Volume Fly-Ash Concrete decrease, because porous organization of Fly-Ash adsorb water and Superplasticizer. In this study, after appending additional water to High Volume Fly-Ash Concrete in proportion to weight of Fly-Ash, we intend to find proper ratio which doesn't affect strength and satisfy fluidity As a result of this study, it was found that fluidity of mortar with 25~28 percentage of additional water was satisfied with fluidity of plain mortar, and compressive strength of that was similar to plain mortar's

  • PDF

산업폐기물인 제지회의 활용방안에 관한 연구 (A Study on Utilization Method of Paper Ash in Industrial Waste)

  • 허열;이처근;이명원;안광국
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.135-141
    • /
    • 1999
  • This study is an experimental study to investigate the possibility of the utilization of paper ash as the cover, liner in waste disposal landfill and other construction materials. The sample used in these tests was obtained from Daehan paper mill. A series of tests were peformed to evaluate basic properties, compaction, permeability, compressive strength, consolidation, leaching, and CBR of paper ash. In order to investigate the soil engineering properties of paper ash, the test results were compared with those obtained of fly ash. The results of unconfined compression tests show that paper ash had a larger strength than the fly ash. Also, the maximum dry unit weight of paper ash was approximately 59~76.9% less than that of the fly ash. It was found from the results of leaching test that paper ash is classified as non-detrimental general wastes according to the waste management law.

  • PDF

볏짚재 콘크리트의 물리.역학적 특성 (Physical and Mechanical Properties of Rice Straw Ash Concrete)

  • 성찬용;김영익
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.103-108
    • /
    • 1998
  • This study examines the physical and mechanical properties of the concrete using rice straw ash. Materials used for this experiment are rice straw ash, normal portland cement, superplasticizer, natural sand and gravel. Test results show that the unit weights of concrete using rice straw ash were decreased 1 ∼ 3% and the highest strengths were achieved by 5% filled rice straw ash concrete, with increase of compressive strength by 19%, tensile strength by 53% and bending strength by 16%, as compared with those of the normal cement concrete. The strength ratio of rice straw ash concrete was higher than that of the normal cement concrete. Also, the durability against sulfuric acid 5% solution was increased with increase of the content of rice straw ash. It was 1.33 times of the normal cement concrete by 10% filled rice straw ash concrete and 1.47 times by 15% filled rice straw ash concrete, respectively Accordingly, rice straw ash concrete will greatly improve the properties of concrete.

  • PDF

Bottom Ash를 잔 골재 대체재로 사용한 콘크리트의 내구성에 관한 실험적 연구 (An Experimental Study on the Durability of Concrete using the Bottom Ash as a part of Fine Aggregate)

  • 최세진;이성일;정용;김양배;오복진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.19-24
    • /
    • 2003
  • Recently, the by-product of coal ash has been increased by increase of consumption of electric power. So in view of environmental aspect, it is important to secure a reclaimed land and treatment utility for coal ash. This is an experimental study to compare and analyze the properties of high volume coal-ash concrete using the bottom ash. For this purpose, the mix proportions of concrete according to the replacement ratio of bottom ash(l0, 20, 35, 50%). And then air content, slump, compressive strength, durability test were performed. According to test results, it was found that the compressive strength of bottom ash concrete was similar to that of plain concrete(BA0). And the carbonation depth of bottom ash concrete increased as the replacement ratio of bottom ash.

  • PDF

석탄회 및 폐타이어 재료의 장기 압축 침하 거동 특성 (Long-term Compressible Settlement of Coal Ash and Tire Shred as Fill Materials)

  • 이성진;신민호;황선근;이용식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.858-865
    • /
    • 2009
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material with bottom ash. Therefore, we carried out the laboratory test, field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials in the before studies. We could verified that the ash, tire-shred and the mixture are able to be the useful materials as light fill materials. In this study, we estimated the long-term compressible settlements for 6 materials such as TA(Tire-Bottom Ash mixture), TBA(Tire-Bottom Ash<5mm) mixture, TWS(Tire-Weathered Soil mixture), Bottom Ash, Bottom Ash(<5mm), Weathered soils.

  • PDF

매립석탄회를 활용한 인공어초 제조기술 개발 (Development of manufacturing technology of Artificial Reef Mixed with Reclamation Coal Ash)

  • 한상묵;조명석;송영철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.125-128
    • /
    • 2005
  • Coal ash, which is generated as a byproduct at a coal thermal power plant, can be classified into fly ash and bottom ash. Most of fly ash is recycled as an admixture for concrete, while bottom ash is not recycled but dumped into an ash landfill disposal site. So, if a technology for recycling bottom ash efficiently, which is increasingly generated year by year, is not developed, environmental problems will take place as a matter course and further an enormous economical cost will be required for construction of additional ash landfill disposal sites. In this study an optimum mix proportion design and a quality control method for utilizing the reclamation coal ash as an aggregate for secondary concrete products such as an artificial reef was successfully developed.

  • PDF

Influence of the Character of Fly Ash on the Fluidity of Fly Ash Cement Paste

  • Lee, Seung-Heun;Sakai, Etsuo
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.426-429
    • /
    • 2010
  • The Influence of the character of fly ash on the fluidity of cement paste with a polycarboxylic acid type superplasticizer was investigated in connection with the particle size distribution, unburned carbon content, specific surface area and shape of the fly ash. The fluidity of the fly ash cement paste with an added 20 vol% fly ash increases with an increasing roundness of the fly ash and it decreases with an increasing n-value of the fly ash cement. There is a linear correlation between the roundness/n-value and the fluidity of fly ash cement paste.

하동 화력발전소에 저장된 Bottom ash의 광물학적 물성 (Mineralogical Properties of Bottom Ash Stored in Pond Site of Hadong Power Plant)

  • 문훈;김성근;윤주한;정철우;이수용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.101-102
    • /
    • 2015
  • Significant amount of bottom ash has been stored in the pond site of Hadong coal power plant located at southeast region of Korea. In order to address strong environmental regulation that is going to be enforced in the near future, it is necessary to consume waste bottom ash stored in the pond site in a sustainable manner. In this research, the chemical and mineral characteristics of various sized bottom ash samples from Hadong coal power plant were analyzed using XRF, XRD, and particle size analyzer. According to the experimental results, the chemical compositions of bottom ash was slightly changed in terms of Al and Fe content. As the size of the bottom ash increased, cristobalite was observed as a result of crystallization. The mineralogical composition and its size distribution of powder type bottom ash indicated that significant amount of fly ash is included together with small sized bottom ash.

  • PDF

국내 석탄회 육상매립의 오염 잠재성 평가 (Assessment of potential environmental impact from fly ash landfill)

  • 이상훈
    • 환경영향평가
    • /
    • 제8권4호
    • /
    • pp.25-35
    • /
    • 1999
  • Fly ash, by-product from coal fired power station, has long been regarded as a potential contamination source for heavy metals and inorganics due to their enriched concentrations and associations with particle surface. Feed coal and fly ash samples were collected from two power stations; Yongdong deliang with domestic anthracite coals and Boryong with imported bituminous coals. The coal and fly ash samples were analyzed for chemical composition and mineral components, using XRF and XRD. Batch leaching experiments were conducted by agitating samples with deionised water for 24 hours. Anthracite coals are generally higher in Al and Si contents than bituminous coals. This is due to the higher ash contents of the anthracite coal than bituminous coal. The chemistry of the two fly ash samples shows broadly similar compositions each other, except for the characteristically high contents of Cr in anthracite coal fly ash. Leaching experiments revealed that concentrations of metals gradually decreased with leachings in general. However, measurable amounts of metals were present in the effluent from weathered ash and the samples subjected to the leaching procedure. These metals are likely to indicate that the metals in fly ash were incorporated into glass fraction as well as associated with particle surface of samples. Dissolution of aluminosilicate glass would control releasing heavy metals from fly ash as weathering progresses during landfill with implication of possible groundwater contamination through fly ash landfill.

  • PDF