• Title/Summary/Keyword: ASF 예측치

Search Result 2, Processing Time 0.016 seconds

Comparison of Predicted and Measured ASF (ASF 예측치와 실측치 비교)

  • Shin, Mi-Young;Hwang, Sang-Wook;Yu, Dong-Hui;Park, Chan-Sik;Lee, Chang-Bok;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • In the almost application parts, GNSS being used the primary navigation system on world-widely. However, some of nations attempt or deliberate to enhance current Loran system, as a backup to satellite navigation system because of the vulnerability to the disturbance signal. Loran interests in supplemental navigation system by the development and enhancement, which is called eLoran, and that consists of advancement of receiver and transmitter and of differential Loran in order to increase the accuracy of current Loran-C. A significant factor limiting the ranging accuracy of the eLoran signal is the ASF in the TOAs observed by the receiver. The ASF is mostly due to the fact that the ground-wave signal is likely to propagate over paths of varying conductivity and topography. This paper presents comparison results between the predicted ASF and the measured ASF in a southern east region of Korea. For predicting ASF, the Monteath model is used. Actual ASF is measured from the legacy Loran signal transmitted Pohang station in the GRI 9930 chain. The test results showed the repeatability of the measured ASF and the consistent characteristics between the predicted and the measured ASF values.

A generation method of ASF mapping by the predicted ASF with the measured one in the Yeongil Bay (ASF 예측모델과 실측치를 이용한 영일만 해상 ASF 맵 생성기법)

  • Hwang, Sang-Wook;Shin, Mi Young;Choi, Yun Sub;Yu, Donghui;Park, Chansik;Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Sang Jeong
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • In order to establish eLoran system it needs the betterment of a receiver and a transmitter, the add of data channel to loran pulse for loran system information and the differential Loran for compensating Loran-c signal. Precise ASF database map is essential if the Loran delivers the high absolute accuracy of navigation demanded at maritime harbor entrance. In this study we developed the ASF mapping method using predicted ASFs compensated by the measured ASFs for maritime in the harbor. Actual ASF is measured by the legacy Loran signal transmitted from Pohang station in the GRI 9930 chain. We measured absolute propagation delay between the Pohang transmitting station and the measurement points by comparing with the cesium clock for the calculation of the ASFs. Monteath model was used for the irregular terrain along the propagation path in the Yeongil Bay. We measured the actual ASFs at the 12 measurement points over the Yeongil Bay. In our ASF-mapping method we estimated that the each offsets between the predicted and the measured ASFs at the 12 spaced points in the Yeongil. We obtained the ASF map by adjusting the predicted ASF results to fit the measured ASFs over Yeungil bay.