• Title/Summary/Keyword: ASD(Allowable Structural Design)

Search Result 29, Processing Time 0.022 seconds

Study on Soft Conversion from ASD to RBD Code in Larch (국산 낙엽송 부재에 대한 ASD에서 RBD로의 코드 전환에 관한 연구)

  • Park, Chun-Young;Kim, Ho-Ki;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.45-50
    • /
    • 2004
  • Currently, structural design of wood structure has been based on ASD (Allowable Structural Design) in Korea. However, the results from this method was known as greater than real value because variations of materials and various conditions were not considered sufficiently. So the study about the design method with probabilistic approach is being performed to overcome this problem. And the standard design method of RBD (Reliability Based Design) has been established and applied. In this study, to apply this method on the domestic wood, the distribution property of the lumber and Glulam was analyzed from the previous report and the basis of the standardized design method was established as soft conversion method from allowable stress used in ASD into reference resistance used in RBD. And through the additional study about the sample size as a important factor to effect on soft conversion, condition to be required in more accurate conversion was evaluated.

A basic research for the probability based design of wood structures (확률 기반 목구조설계법을 위한 기초 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.4
    • /
    • pp.339-357
    • /
    • 2009
  • Probability based design(PBD) method is independent of construction materials and uses real material properties unlike allowable stress design(ASD) that depends on small clear specimen property, also give quantitative safety and endurance lifetime of a certain material. Moreover, almost advanced country accepted PBD method instead of ASD method. So it is urgent to convert the current ASD method into the PBD method. However, there are wholly lacking of domestic researches related to current issue, and to solve several points in ASD method and to take advantage of PBD method, the conversion from the ASD method into the PBD method is a worldwide trend. Other domestic construction codes, such as steel or concrete constructions, accept the PBD method as well. Accordingly, to introduce PBD method into wood structural design, general theory, and preliminary data and methods were reviewed. With keeping this in mind, some important contents were reviewed, sorted some points for wood structural design that have distinctions against the other construction materials. Furthermore, the history of PBD method, and statistical data and theories for the PBD method, and preliminary data of resistance and load that are two random variables for the PBD method, and finally the difference between limit state design(LSD) and load and resistance factor design(LRFD) that were two superpowers in the PBD method.

  • PDF

Comparative Study of Design Methods for Manufacturing of Steel Structure (철구조물의 설계방법에 대한 비교 연구)

  • Kim, Dong-Kwon;Choi, Jae-Seung;Hwang, Suk-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.357-362
    • /
    • 2000
  • Allowable stress design(ASD) method has been widely used to design steel structures such as boiler and heat recovery steam generator(HRSG) of power plant. However, many researchers are recently intrested in road and resistance factor design(LRFD) method which may take the place of ASD. In this work, the weight calculation of steel structure was compared when ASD and LRFD were applied respectively. For the calculation of weight of steel structure, computer program was developed and applied to obtain beam weight. Using this program and GTSTRUDL, structural design program, weight of steel structure is calculated. As a result of weight calculation, maximum 5.4% of weight reduction is achieved among examples of this study by applying LRFD comparing with the result of ASD, and those results quite dependent on the applied load and member classification.

  • PDF

Methods for wooden structural design- A comparative research between deterministic design and probability based design (목구조 설계를 위한 확정론적 구조 설계법과 확률 기반 구조 설계법의 비교 연구)

  • Park, Moon-Jae;Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.4
    • /
    • pp.358-373
    • /
    • 2009
  • Probability based design(PBD)method has some advantages against current design methods. First, it can provide the quantitative values for the structural safety or capacity through the reliability index, $^{\beta}$. That presented the certainty on the corresponding structure for the designer or user, also that permitted the broad consideration in the safety of structures. In addition, it can give the quantitative lifetime of the related structure in the calculation process of target reliability index. Also, incidental economical efficiency can be expected because decrease of required structural material can be obtained by using the practical material data. Unlikely current deterministic structural design methods, main advantage is the reflection of real condition in the structural design process by application of the data with not small clear specimen but structural size material. Advanced countries, namely America, Canada, Europe, Australia and New Zealand already converted from allowable stress design(ASD) method to PBD method and used as a standard wooden structures code in the late 1980s and 1990s. Other domestic constructions standards such as the steel or concrete constructions accepted and used the PBD methods already. Accordingly, wooden structural design method also should be converted from deterministic ASD to probabilistic LRFD(Load and resistance factor design) in order to keep pace with worldwide demands for PBD. Hence, to suggest the reason of introduction the PBD in domestic wooden structural design and analysis, a brief example was used to show the different reliability index by using the different design methods. Definition, merits and demerits of deterministic ASD and probabilistic LRFD were followed. Also the three examples were presented to show the similarity and differences between ASD and LRFD. Finally, connection problems that might cause a disputation in wooden structural design and analysis were broadly examined.

  • PDF

A Study on the Uncertainty of Structural Cross-Sectional Area Estimate by using Interval Method for Allowable Stress Design

  • Lee, Dongkyuc;Park, Sungsoo;Shin, Soomi
    • Architectural research
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • This study presents the so-called Modified Allowable Stress Design (MASD) method for structural designs. The objective of this study is to qualitatively estimate uncertainties of tensile steel member's cross-sectional structural designs and find the optimal resulting design which can resist all uncertainty cases. The design parameters are assumed to be interval associated with lower and upper bounds and consequently interval methods are implemented to non-stochastically produce design results including the structural uncertainties. By seeking optimal uncertainty combinations among interval parameters, engineers can qualitatively describe uncertain design solutions which were not considered in conventional structural designs. Under the assumption that structures have basically uncertainties like displacement responses, the safety range of resulting designs is represented by lower and upper bounds depending on given tolerance error and structural parameters. As a numerical example uncertain cross-sectional areas of members that can resist applied loads are investigated and it demonstrates that the present design method is superior to conventional allowable stress designs (ASD) with respect to a reliably structural safety as well as an economical material.

Comparison of Stability Evaluation Methods using ASD and LRFD Codes for Girders and Towers of Steel Cable-Stayed Bridges (사장교 거더와 주탑의 안정성 검토를 위한 ASD와 LRFD 설계법 비교)

  • Choi Dong-Ho;Yoo Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1001-1008
    • /
    • 2006
  • The main objective of this paper is to compare economical effectiveness of typical methods for checking stability in principal components of steel cable-stayed bridges. Elastic and inelastic buckling analyses are carried out for frame-like numerical models of cable-stayed bridges. The axial-flexural interaction equations prescribed in AASHTO Allowable Stress Design (ASD) and AASHTO Load and Resistance Factor Design (LRFD) are used in order to check the stability of principal components. Parametric studies are performed for numerical models which have the center span length of 300m, 600m, 900m and l200m with different girder depths. Peak values of the interaction equations are calculated at the intersection point between girders and towers. These peak values are considered as a major factor to design of principal components of cable-stayed bridges. As a result, more economical design for girders and towers can be feasible using the inelastic buckling analysis. In addition, LRFD codes are more economical about 20% on the average than ASD codes for all numerical models of cable-stayed bridges.

  • PDF

A Conversion of Load Carrying Capacity for Existing Steel Box Girder Bridge Based on Limit State Design Method (한계상태설계법에 의한 기존 강박스거더교의 내하력 환산)

  • Noh, Dong-Oh;Kyung, Kab-Soo;Park, Jin-Eun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.89-96
    • /
    • 2018
  • Bridge structures are a socially important infrastructure and safety management of bridges during the public service period is important. Steel box girder bridges, which account for a large percentage of road bridges, have been designed by allowable stress design method(ASD) and load carrying capacity have been evaluated using ASD. Although design specification has recently been changed to limit state design method(LSD), in most cases, ASD is still used for load carrying capacity evaluation. In this study, the two design methods were used to compare the results of a load rating factor evaluation on a number of bridges, and we are going to find out how to convert the existing rating factor by ASD into rating factor by LSD. The results of this study are expected to can be used as a basis for determining the need for reinforcement and evaluating load carrying capacity by LSD in bridge maintenance.

A high strength concrete segment lining design using the limit state design code (한계상태 설계법을 이용한 고강도 콘크리트 세그먼트 라이닝 설계)

  • Park, Inn-Joon;Koh, Sung-Yil;Hwang, Chang-Hee;Oh, Myung-Ho;Kim, Young-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.547-559
    • /
    • 2012
  • The concrete structural design in domestic has based on the allowable stress design (ASD) method and ultimate strength design (USD) method. Recently limit state design (LSD) method has issued and attempted to adopt in geotechnical design. Because ASD method and USD method have restriction in economic design. In this study, the generated member forces were calculated about high strength concrete segment lining based on japanese LSD code. And it compared with domestic USD code for identifying the economic design possibility of LSD and domestic applicability. In analysis results, the aspect of moment had generated similarly each other but the member forces of japanese LSD code were decreased (26.0% of moment and 26.7% of shear force) comparing with USD method. For that reason, possibility of economic segment design with stable condition were identified.

A Study on the two span preflex composite girder bridges with LRFD (LRFD에 의한 2경간 Preflex 합성형교에 관한 연구)

  • 구민세;박영제;오석태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.95-102
    • /
    • 1999
  • Preflex beams are prestressed by the predeflection technique, which enables the use of concrete-encased high strength steel beams where deflection or cracking of concrete, or both, would otherwise be excessive. This study presents the analysis of the two span preflex composite girder bridges with Load and Resistance Factor Design(LRFD), which is most widely used design nile in the advanced states. The results show that the comparison of LRR with Allowable Stress Design(ASD) according to span length.

  • PDF

Optimum Design of I-Type Girders in Steel Bridges by LRFD and ASD (하중-저항계수 설계법과 허용응력 설계법에 의한 강교량 주부재의 최적화 설계)

  • 안성욱;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.183-190
    • /
    • 1998
  • In this study, I-type girders, main members of a steel composite bridge, are designed by Load and Resistance Factor Design method as well as Allowable Stress Design method. The width, height web thickness and flange thickness of main girders are set as design variables. The design program connects optimization program ADS, which is coded with FORTRAN, and a main program coded with $C^{++}$. In this study, it is shown that in this particular steel composite bridge, the design by The Load and Resistance Factor Design method is more economical than that by The Allowable Stress Design method.d.

  • PDF