• Title/Summary/Keyword: ASCE

Search Result 205, Processing Time 0.025 seconds

Assessment of the Strong Motion Duration Criterion of Synthetic Accelerograms (내진설계를 위한 인공지진파 강진지속시간 기준의 평가)

  • Huh, Jung-Won;Jung, Ho-Sub;Kim, Jae-Min;Chung, Yun-Suk
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.133-140
    • /
    • 2006
  • This paper addresses a fundamental research subject to complement and improve current domestic design specifications for the strong motion duration criterion and the envelop function of artificial accelerograms that can be applied to the earthquake-proof design of nuclear structures. The criteria for design response spectra and strong motion duration suggested by WRC RG 1.60 and ASCE Standard 4-98 are commonly being used in the profession, and they are first compared with each other and reviewed. By applying 152 real strong earthquake records that are over magnitude of 5 in the rock sites to the strong motion duration criterion in ASCE 4-98, an empirical regression model that predicts the strong motion duration as a function of earthquake magnitude is then developed. Using synthetically generated earthquake time histories for the five cases whose strong motion durations vary from 6 to 15 seconds, a seismic analysis is conducted to identify effects of the strong motion durations on the seismic responses of nuclear structures.

  • PDF

Updates to the wind tunnel method for determining design loads in ASCE 49-21

  • Gregory A. Kopp
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • The paper reviews and discusses the substantive changes to the ASCE 49-21 Standard, Wind Tunnel Testing for Buildings and Other Structures. The most significant changes are the requirements for wind field simulations that utilize (i) partial turbulence simulations, (ii) partial model simulations for the flow around building Appurtenances, along with requirements for determining wind loads on products that are used at multiple sites in various configurations. These modifications tend to have the effect of easing the precise scaling requirements for flow simulations because it is not generally possible to construct accurate models for small elements placed, for example, on large buildings at the scales typically available in boundary layer wind tunnels. Additional discussion is provided on changes to the Standard with respect to measurement accuracy and data acquisition parameters, such as duration of tests, which are also related to scaling requirements. Finally, research needs with respect to aerodynamic mechanisms are proposed, with the goal of improving the understanding of the role of turbulence on separated-reattaching flows on building surfaces in order to continue to improve the wind tunnel method for determining design wind loads.

Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.129-142
    • /
    • 2013
  • Linear and nonlinear time history analyses have been becoming more common in seismic analysis and design of structures with advances in computer technology and earthquake engineering. One of the most important issues for such analyses is the selection of appropriate acceleration time histories and matching these histories to a code design acceleration spectrum. In literature, there are three sources of acceleration time histories: artificial records, synthetic records obtained from seismological models and accelerograms recorded in real earthquakes. Because of the increase of the number of strong ground motion database, using and scaling real earthquake records for seismic analysis has been becoming one of the most popular research issues in earthquake engineering. In general, two methods are used for scaling actual earthquake records: scaling in time domain and frequency domain. The objective of this study is twofold: the first is to discuss and summarize basic methodologies and criteria for selecting and scaling ground motion time histories. The second is to analyze scaling results of time domain method according to ASCE 7-05 and Eurocode 8 (1998-1:2004) criteria. Differences between time domain method and frequency domain method are mentioned briefly. The time domain scaling procedure is utilized to scale the available real records obtained from near fault motions and far fault motions to match the proposed elastic design acceleration spectrum given in the Eurocode 8. Why the time domain method is preferred in this study is stated. The best fitted ground motion time histories are selected and these histories are analyzed according to Eurocode 8 (1998-1:2004) and ASCE 7-05 criteria. Also, characteristics of both near fault ground motions and far fault ground motions are presented by the help of figures. Hence, we can compare the effects of near fault ground motions on structures with far fault ground motions' effects.

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections (슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Gyu;Kim, Jun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.

An Analytical Study on the Anchorage Design in Exterior R/C Beam-Column Connections (R/C조 외측 보-기둥 접합부의 정착설계에 대한 해석적 연구)

  • 최기봉
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.133-142
    • /
    • 1992
  • An analytical model was developed for predicting the pullout behavior of straight beam longitudinal bars anchored at exterior beam-column connections. The model incorporates a local bond constitutive simulation capable of considering the effects of anchored bar diameter, yield strength and the spacing, concrete compressive strength, and column pressure on the bond characteristics of deformed bars in confined conditions of exterior joints. The analytical techniques adopted in this study were shown to satisfactorily predict the results of pullout tests on straight bars embedded in confined concrete specimens. An evaluation of the ACI-ASCE Committee 352 development length requirements in exterior joint conditions was made using the developed analytical approach. The results of this analytical evaluation are indicative of the conservatism of the current development length requirements in the confined conditions of exterior joints.

  • PDF

Experimental Assessment of Numerical Models for Reinforced Concrete Shear Walls with Deficient Details (결함 상세를 포함하는 철근콘크리트 전단벽의 수치 모델에 관한 실험적 평가)

  • Jeon, Seong-Ha;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.211-222
    • /
    • 2016
  • Reinforced concrete shear walls with deficient reinforcement details are tested under cyclic loading. The deficiency of reinforcement details includes insufficient splice length in U-stirrups at the ends of horizontal reinforcement and boundary column dowel bars found in existing low- to mid-rise Korean buildings designed non-seismically. Three test specimens have rectangular, babel and flanged sections, respectively. Flexure- and shear-controlled models for reinforced concrete shear walls specified in ASCE/SEI 41-13 are compared with the flexural and shear components of force-displacement relation extracted separately from the top displacement of the specimen based on the displacement data measured at diverse locations. Modification of the shear wall models in ASCE/SEI 41-13 is proposed in order to account for the effect of bar slip, cracking loads in flexure and shear. The proposed modification shows better approximation of the test results compared to the original models.

Seismic Performance Evaluation of Piloti-type low-rise RC apartment buildings using Nonlinear Static Analysis (비선형 정적해석을 이용한 필로티형 저층 RC 집합주택의 내진성능평가)

  • Lee, Jeong-Jae;Lee, Han-Seon;Kim, Hee-Cheul;Lee, Young-Hak;Lee, Ki-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.237-240
    • /
    • 2008
  • The objective of this study is to evaluate the seismic performance of the low-rise RC apartment buildings having piloties at ground level by using nonlinear static analysis with regards to the maximum considered and design earthquakes in Korea. To do this, the target displacement at roof was estimated according to FEMA356 (or ASCE/SEI-41), and the deformations of the critical members were compared with the failure criteria of Life Safety(LS) and Collapse Prevention(CP) given in FEMA356. The conclusions are as follows: (1) columns satisfy criteria of LS and CP, but (2) the shear wall in the longitudinal direction failed to satisfy those of both LS and CP while those in the transverse direction satisfy that of LS, but failed that of CP.

  • PDF

Simulation of non-steady state oxygen transfer caused by microbubble supply (비정상상태의 미세기포에 의한 산소 전달 특성 모사)

  • Lee, Jaiyeop;Kim, Ilho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.381-388
    • /
    • 2018
  • Microbubbles oxygen transfer to water was simulated based on experimental results obtained from the bubbles generation operated under varying liquid supply velocity to the multi-step orifices of the generator. It had been known that liquid supply velocity and bubble size are inversely related. In the oxygen transfer, a non-steady state was assumed and the pseudo stagnation caused the slow movement of bubbles from the bottom to the water surface. Two parameters were considered for the simulation: They represent a factor to correct the pseudo stagnation state and a scale which represented the amount of bubbles in supply versus time. The sum of absolute error determined by fitting regression to the experimental results was comparable to that of the American Society of Civil Engineers (ASCE) model, which is based on concentration differential as the driving force. Hence, considering the bubbles formation factors, the simulation process has the potential to be easily used for applications by introducing two parameters in the assumptions. Compared with the ASCE model, the simulation method reproduced the experimental results well by detailed conditions.

Study of wind tunnel test results of high-rise buildings compared to different design codes

  • Badri, Abdulmonem A.;Hussein, Manar M.;Attia, Walid A.
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.623-642
    • /
    • 2015
  • Several international codes have been developed for evaluating wind loads on structures; however, the wind structure interaction could not be accurately captured by these codes due to the gusty nature of wind and the dynamic behavior of structures. Therefore, the alternative wind tunnel testing was introduced. In this study, an introduction to the available approaches for wind load calculations for tall buildings was presented. Then, a comparative study between different codes: the Egyptian code, ECP 201-08, ASCE 7-05, BS 6399-2, and wind tunnel test results was conducted. An investigation has been carried out on two case studies tall buildings located within the Arabian Gulf region. Numerical models using (ETABS) software were produced to obtain the relation between codes analytical values and wind tunnel experimental test results for wind loads in the along and across wind directions. Results for the main structural responses including stories forces, shears, overturning moments, lateral displacements, and drifts were presented graphically in order to give clear comparison between the studied methods. The conclusions and recommendations for future works obtained from this research are finally presented to help improving Egyptian code provisions and show limitations for different cases.