출입국 관리 시스템은 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하여 출입국자를 관리하고 있다. 이러한 출입국 관리 시스템은 위조 여권 판별이 중요하므로 위조 여권을 판별하는 전 단계로 ART2 기반 RBF네트워크를 제안하여 여권을 인식하는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 스미어링 그리고 윤곽선 추적 알고리즘을 이용하여 코드의 문자열 영역과 개별 코드의 문자를 추출한다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF네트워크를 제안하여 여권 인식에 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상들을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.
The vibration signal can give an indication of the condition of rotating machinery, highlighting potential faults such as unbalance, misalignment and bearing defects. The features in the vibration signal provide an important source of information for the faults diagnosis of rotating machinery. When additional training data become available after the initial training is completed, the conventional neural networks (NNs) must be retrained by applying total data including additional training data. This paper proposes the fault diagnostics algorithm using the ART-Kohonen network which does not destroy the initial training and can adapt additional training data that is suitable for the classification of machine condition. The results of the experiments confirm that the proposed algorithm performs better than other NNs as the self-organizing feature maps (SOFM) , learning vector quantization (LYQ) and radial basis function (RBF) NNs with respect to classification quality. The classification success rate for the ART-Kohonen network was 94 o/o and for the SOFM, LYQ and RBF network were 93 %, 93 % and 89 % respectively.
The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. We proposed and evaluated the novel recognition algorithm of container identifiers that overcomes effectively the hardness and recognizes identifiers from container images captured in the various environments. The proposed algorithm, first, extracts the area including only all identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper and by applying contour tracking method to the binarized area, container identifiers which are targets of recognition are extracted. We proposed and applied the ART2-based RBF network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm has more improved performance in the extraction and recognition of container identifiers than the previous algorithms.
퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 학습률의 설정에 따라 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 학습률로 설정하여 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 영문 명함에서 추출한 영문자들을 대상으로 실험한 결과, 기존의 ART1과 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.
Design is important in the IT, digital appliance, and auto industries. Aesthetic and art images are being applied for better quality of the products. Most image patterns are complex and much lead-time is required to implement them to the product design process. A precise reverse engineering method generating 2.5D engraving models from 2D artistic images is proposed through the image processing, NURBS interpolation and 2.5D reconstruction methods. To generate 2.5D TechArt models from the art images, boundary points of the images are extracted by using the adaptive median filter and the novel MBF (modified boundary follower) algorithm. Accurate NURBS interpolation of the points generates TechArt CAD models. Performance of the developed system has been confirmed through the quick turnaround 2.5D engraving simulation linked with the commercial CAD/CAM system.
최근 여러 인터넷 서비스 업체에서 온라인 의료 진단 서비스 시스템을 제공하고 있다. 대부분 의료 진단 서비스 시스템은 서양 의학을 기초로 질병에 대한 처방이나 식이요법 등을 제공하기 때문에 전문 지식이 부족한 일반인들은 이용하기에 큰 어려움이 있다. 본 논문에서는 퍼지 ART 알고리즘을 적용하여 한국인 고유의 신체적 특성에 맞는 한의학 기반의 한방 자가 진단 시스템을 제안한다. 제안된 한방 자가 진단 시스템은 사용자가 제시한 증상과 이전에 진단 받았던 진료 기록을 바탕으로 이미 학습되어진 질병의 증상과 비교하여 신경망을 통해 유사도가 높은 상위 3개의 질병을 도출한다. 또한 상위 3개의 질병에 대해 질병의 전체적인 증상과 한의학 서적에서 제시한 민간요법을 제시한다. 질병과 증상에 대한 데이터베이스는 여러 한의학 서적을 통해 구축한 후 한의학 전문의의 검증을 거쳐 구현하였다. 제안된 한방 자가 진단 시스템은 진료 기록을 바탕으로 학습함으로써 기존의 질병 진단 시스템 보다 정확하게 질병을 진단한 것을 확인하였다.
이진 영상은 모양, 위치, 수, 정보 등 원본 영상의 정보를 최대한 보존하면서 인식이나 분할에 적합하게 변화된 단순한 흑백영상이다. 영상의 이진화 처리는 영상처리 분야에서 문자인식, 영상분석 등과 같은 다양한 응용에서 배경과 물체를 구분하는 영상분할을 위한 일반적인 도구로 사용된다. 퍼지 이진화는 영상에 대한 임계값을 원본 영상의 가장 밝은 픽셀과 가장 어두운 픽셀의 평균값으로 설정하고 이를 삼각형 타입의 소속 함수에 적용하여 영상을 이진화 한다. 그러나 퍼지 이진화는 영상의 배경과 물체의 밝기 차이가 큰 경우에는 이진화가 효과적이지만 차이가 크지 않은 경우에는 소속 함수 구간을 효율적으로 설정할 수 없어 이진화를 효과적으로 할 수 없다. 따라서 본 논문에서는 이러한 문제점을 개선하기 위해 ART2 알고리즘을 적용하여 각 클러스터의 중심 값을 구한다. 그리고 각 클러스터의 중심 값에 해당하는 명암도를 이용하여 평균값을 구한 후, 이 평균값을 퍼지 이진화 방법에서 소속 함수 구간의 중간값으로 설정하여 영상을 이진화 한다. 다양한 영상에 제안된 방법과 기존의 퍼지 이진화 방법을 적용한 결과, 기존의 퍼지 이진화 방법보다 정보 손실이 적은 것을 확인하였다.
In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.
세라믹 소재 영상은 사람의 육안으로 판단하기 힘든 내부 기공이나 균열, 이물질 등의 결함들이 존재한다. 본 논문에서는 사람의 육안으로 검출하기 힘든 세라믹 소재로 이루어진 파이프 용접부에 있는 결함을 확인하기 위해 ART2 알고리즘을 이용하여 세라믹 영상에서 결함을 검출하는 방법을 제안한다. 비파괴 검사는 본질에 손상이 전혀 가지 않는 검사 방법이기 때문에 소재의 결함 검출에 대해서는 적절한 방법이다. 따라서 본 논문에서는 Ends-In Search Stretching 기법을 적용하여 명암 대비를 강조하고, 명암 대비가 강조된 영상에서 삼각형 타입의 소속 함수를 이용한 퍼지 이진화 기법을 적용한 후, 임의의 패턴 입력에 대해서도 효과적으로 특징을 분류하는 개선된ART2 알고리즘을 적용하여 결함 영역을 검출한다. 제안된 방법을 세라믹 소재 영상을 대상으로 실험한 결과, 기존의 방법보다 효율적으로 결함이 검출되는 것을 확인하였다.
적응적 랜덤 테스팅 (Adaptive Random Testing, ART)은 입력 도메인 내에 테스트 케이스를 넓고 고르게 분산시키는 방법을 통해 입력 도메인 내에 존재하는 오류 패턴을 순수 랜덤 테스팅 (Random Testing, RT)보다 효율적으로 찾아내기 위한 테스트 케이스 선택 기법이다. 테스트 케이스 선택에 많은 연산량을 필요로 하는 초기 ART 기법인 거리 기반 ART (Distance-based ART, D-ART)와 제한 영역 기반 ART (Restricted Random Testing, RRT)의 개선을 위해 입력 도메인을 반복 분할하는 기법들이 제안되었고, 이 기법들은 낮은 연산량 및 성능 향상등의 효과를 가져왔다. 하지만, 입력 도메인 반복 분할 기반 기법에서도 기존 ART 기법에서 나타나는 테스트 케이스 분포 불균일 문제가 존재하고, 이는 기법의 확장성에 장애 요소로 작용한다. 따라서 본 논문에서는 반복 분할 기반 기법에서 나타나는 테스트 케이스 분포의 특성을 파악하고, 이를 적정 수준으로 제어하기 위한 입력 도메인 확장 정책을 제안하였으며, 실험을 통해 2차원 입력 도메인에서 3%, 3차원 입력 도메인에서 10% 수준의 성능 향상을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.