• 제목/요약/키워드: ARS sensor

검색결과 28건 처리시간 0.026초

On-the-go Soil Strength Profile Sensor to Quantify Spatial and Vertical Variations in Soil Strength

  • Chung, Sun-Ok;Sudduth, Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • 제6권2호
    • /
    • pp.39-46
    • /
    • 2005
  • Because soil compaction is a concern in crop production and environmental pollution, quantification and management of spatial and vertical variability in soil compaction for soil strength) would be a useful aspect of site -specific field management. In this paper, a soil strength profile sensor (SSPS) that could take measurements continuously while traveling across the field was developed and the performance was evaluated through laboratory and field tests. The SSPS obtained data simultaneously at 5 evenly spaced depths up to 50 em using an array of load cells, each of which was interfaced with a soil-cutting tip. Means of soil strength measurements collected in adjacent, parallel transects were not significantly different, confirming the repeatability of soil strength sensing with the SSPS. Maps created with sensor data showed spatial and vertical variability in soil strength. Depth to the restrictive layer was different for different field locations, and only 5 to 16% of the tested field areas were highly compacted.

  • PDF

토크센서 기반 사용자의도 파악이 가능한 보행보조기용 인휠 구동기 개발 (Development of In-wheel Actuator for Active Walking Aids Equipped with Torque Sensor for User Intention Recognition)

  • 임승환;김태근;김동엽;황정훈;김봉석;박창우;이재민;홍대희
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1141-1146
    • /
    • 2014
  • As life expectancy becomes longer, reduction of human muscular strength threatens quality of human life. Many robotic devices have thus been developed to support and help human daily life. This paper deals with a new type of in-wheel actuator that can be effectively used for the robotic devices. BLDC motor, drive board, brake, ARS (Attribute Reference System), and torque sensor are combined in the single actuator module. The torque sensor is used to recognize human intention and the in-wheel actuator drives walking aids in our system. Its feasibility was tested with the active walking aid device equipped with the in-wheel actuator. Based on it, we designed an admittance filter algorithm to react on uphill and downhill drive. By adjusting mass, damping, and spring parameters in accordance with the ARS output, it provided convenient drive to the old on uphill and downhill walks.

초음파센서를 이용한 변량제어 스프레이어 (Ultrasonic Sensor Controlled Sprayer for Variable Rate Liner Applications)

  • 전홍영;주허핑
    • Journal of Biosystems Engineering
    • /
    • 제36권1호
    • /
    • pp.15-22
    • /
    • 2011
  • An experimental variable rate nursery sprayer was developed to adjust application rates for canopy volume in real time. The sprayer consisted of two vertical booms integrated with ultrasonic sensors, and variable rate nozzles coupled with pulse width modulation (PMW) based solenoid valves. A custom-designed microcontroller instructed the sensors to detect canopy size and occurrence and then controlled nozzles to achieve variable application rates. A spray delivery system, which consisted of diaphragm pump, pressure regulator and 4-cycle gasoline engine, offered the spray discharge function. Spray delay time, time adjustment in spray trigger for the leading distance of the sensor, was measured with a high-speed camera, and it was from 50 to 140 ms earlier than the desired time (398 ms) at 3.2 km/h under indoor conditions. Consequently, the sprayer triggered 4.5 to 12.5 cm prior to detected targets. Duty cycles of the sprayer were from 20 to 34 ms for senor-to-canopy (STC) distance from 0.30 to 0.76 m. Outdoor test confirmed that the nozzles were triggered from 290 to 380 ms after detecting tree canopy at 3.2 km/h. The spray rate of the new sprayer was 58.4 to 85.2% of the constant application rate (935 L/ha). Spray coverage was collected at four areas of evergreen canopy by water sensitive papers (WSP), and ranged from 1.9 to 41.1% and 1.8 to 34.7% for variable and constant rate applications, respectively. One WSP area had significant (P < 0.05) difference in mean spray coverage between two application conditions.

태양시선벡터를 이용한 저가 관성항법시스템의 보정 (Calibration of Low-cost Inertia Navigation System with Sun Line of Sight Vector)

  • 장세아;최기영
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.774-778
    • /
    • 2008
  • The inaccuracy of inertial sensors used in low cost IMU's limits the usage to ARS, at best. Sensor fusion technologies are widely used to overcome this problem. GPS is the most popular secondary sensor, but GPS alone cannot fully compensate the IMU errors in the initial alignment process and rectilinear flights. This paper presents a new concept of aiding the low cost IMU with the sun line of sight vector. The simulation and experimental results in this paper proves that aiding of INS/GPS with the sun line of sight vector increases the observability and improves accuracy remarkably.

Characterization of Cone Index and Tillage Draft Data to Define Design Parameters for an On-the-go Soil Strength Profile Sensor

  • Chung S. O.;Sudduth Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • 제5권1호
    • /
    • pp.10-20
    • /
    • 2004
  • Precision agriculture aims to minimize costs and environmental damage caused by agriculture and to maximize crop yield and profitability, based on information collected at within-field locations. In this process, quantification of soil physical properties, including soil strength, would be useful. To quantify and manage variability in soil strength, there is need for a strength sensor that can take measurements continuously while traveling across the field. In this paper, preliminary analyses were conducted using two datasets available with current technology, (1) cone penetrometer readings collected at different compaction levels and for different soil textures and (2) tillage draft (TD) collected from an entire field. The objective was to provide information useful for design of an on-the-go soil strength profile sensor and for interpretation of sensor test results. Analysis of cone index (CI) profiles led to the selection of a 0.5-m design sensing depth, 10-MPa maximum expected soil strength, and 0.1-MPa sensing resolution. Compaction level, depth, texture, and water content of the soil all affected CI. The effects of these interacting factors on data obtained with the soil strength sensor should be investigated through experiments. Spatial analyses of CI and TD indicated that the on-the-go soil strength sensor should acquire high spatial-resolution, high-frequency ($\ge$ 4 Hz) measurements to capture within-field spatial variability.

  • PDF

Spatial Variability of Soil Properties using Nested Variograms at Multiple Scales

  • Chung, Sun-Ok;Sudduth, Kenneth A.;Drummond, Scott T.;Kitchen, Newell R.
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.377-388
    • /
    • 2014
  • Purpose: Determining the spatial structure of data is important in understanding within-field variability for site-specific crop management. An understanding of the spatial structures present in the data may help illuminate interrelationships that are important in subsequent explanatory analyses, especially when site variables are correlated or are a combined response to multiple causative factors. Methods: In this study, correlation, principal component analysis, and single and nested variogram models were applied to soil electrical conductivity and chemical property data of two fields in central Missouri, USA. Results: Some variables that were highly correlated, or were strongly expressed in the same principal component, exhibited similar spatial ranges when fitted with a single variogram model. However, single variogram results were dependent on the active lag distance used, with short distances (30 m) required to fit short-range variability. Longer active lag distances only revealed long-range spatial components. Nested models generally yielded a better fit than single models for sensor-based conductivity data, where multiple scales of spatial structure were apparent. Gaussian-spherical nested models fit well to the data at both short (30 m) and long (300 m) active lag distances, generally capturing both short-range and long-range spatial components. As soil conductivity relates strongly to profile texture, we hypothesize that the short-range components may relate to the scale of erosion processes, while the long-range components are indicative of the scale of landscape morphology. Conclusion: In this study, we investigated the effect of changing active lag distance on the calculation of the range parameter. Future work investigating scale effects on other variogram parameters, including nugget and sill variances, may lead to better model selection and interpretation. Once this is achieved, separation of nested spatial components by factorial kriging may help to better define the correlations existing between spatial datasets.

410L 스테인레스 강의 ARS 센서 링 제조를 위한 자기적 특성에 관한 연구 (A Study of Magnetic Properties of 410L Stainless Steel for Manufacture of ABS Sensor Ring)

  • 양현수;곽창섭;임종국
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1998년도 추계 학술논문발표회 논문집
    • /
    • pp.29-39
    • /
    • 1998
  • It is well known for 410L ferritic stainless steel powder to applicate a sensor ring in anti-lock brake system of automobile, several studies, because of its excellent magnetic properties. This study was carried out In investigate the magnetic properties such as the maximum magnetic induction, coercivity and maximum permeability of the materials with functions of sintering density! time and temperature, and concluded as follows; 1. Sintering under the circumstances of hydrogen gas and tile temperature of $1250^{\circ}C$ for 60min. showed that nitrogen was increased, whereas carbon and oxygen decreased in quantities. 2. Both maximum magnetic induction value of 4700Gauss and permeability of 200 were obtained at the maximum sintering density of 6.89g/$cm^3$. Here, the properties showed a linear increasement with increasing the sintering density. 3. Coercivity sharply increased with incresing the sintering density and reached to 7.6Oe at the maximum sintering density of 6.89g/$cm^3$.

  • PDF

On-the-go Nitrogen Sensing and Fertilizer Control for Site-specific Crop Management

  • Kim, Y.;Reid, J.F.;Han, S.
    • Agricultural and Biosystems Engineering
    • /
    • 제7권1호
    • /
    • pp.18-26
    • /
    • 2006
  • In-field site-specific nitrogen (N) management increases crop yield, reduces N application to minimize the risk of nitrate contamination of ground water, and thus reduces farming cost. Real-time N sensing and fertilization is required for efficient N management. An 'on-the-go' site-specific N management system was developed and evaluated for the supplemental N application to com (Zea mays L.). This real-time N sensing and fertilization system monitored and assessed N fertilization needs using a vision-based spectral sensor and controlled the appropriate variable N rate according to N deficiency level estimated from spectral signature of crop canopies. Sensor inputs included ambient illumination, camera parameters, and image histogram of three spectral regions (red, green, and near-infrared). The real-time sensor-based supplemental N treatment improved crop N status and increased yield over most plots. The largest yield increase was achieved in plots with low initial N treatment combined with supplemental variable-rate application. Yield data for plots where N was applied the latest in the season resulted in a reduced impact on supplemental N. For plots with no supplemental N application, yield increased gradually with initial N treatment, but any N application more than 101 kg/ha had minimal impact on yield.

  • PDF