• Title/Summary/Keyword: ARQ error control

Search Result 49, Processing Time 0.027 seconds

Network Adaptive ARQ Error Control Scheme for Effective Video Transport over IP Networks (IP 망을 통한 비디오 전송에 효율적인 망 적응적 ARQ 오류제어 기법)

  • Shim, Sang-Woo;Seo, Kwang-Deok;Kim, Jin-Soo;Kim, Jae-Gon;Jung, Soon-Heung;Bae, Seong-Jun
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.530-541
    • /
    • 2011
  • In this paper, we propose an effective network-adaptive ARQ based error control scheme to provide video streaming services through IP networks where packet error usually occurs. If time delay and feedback channel are allowed, client can request server to retransmit lost packets through IP networks. However, if retransmission is unconditionally requested without considering network condition and number of simultaneous feedback messages, retransmitted packets may not arrive in a timely manner so that decoding may not occur. In the proposed ARQ, a client conditionally requests retransmission based on assumed network condition, and it further determines valid retransmission time so that effective ARQ can be applied. In order to verify the performance of the proposed adaptive ARQ based error control, NIST-Net is used to emulate packet-loss network environment. It is shown by simulations that the proposed scheme provides noticeable error resilience with significantly reduced traffics required for ARQ.

Throughput Performance Analysis of Transmission System with SR-ARQ Scheme in Burst Home Network Channel (버스트 홈 네트워크 채널에서 SR-ARQ 기법을 적용한 전송 시스템의 Throughput 성능 분석)

  • Roh, Jae-Sung;Chang, Tae-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.894-897
    • /
    • 2008
  • This paper analyzes the throughput performance of a selective repeat (SR)/automatic repeat request (ARQ) scheme to transmit packet data in burst home network channel. To combat the high degree of error caused by transmission of home network data a robust error control scheme is a necessity. Basically, error control schemes can be divided in two categories: ARQ schemes and forward error correction (FEC) schemes. ARQ schemes are often used for reliable data transmission. The performance of packet transmission using SR-ARQ schemes for bursty channels is analyzed and simple analytical expressions of its throughput are presented. Theoretic analysis and numerical results indicate that a small number of packet sizes can get good performance in bursty home network channel.

  • PDF

Optimum TCP/IP Packet Size for Maximizing ATM Layer Throughput in Wireless ATM LAN

  • Lee, Ha-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11B
    • /
    • pp.953-959
    • /
    • 2006
  • This paper provides optimum TCP/IP packet size that maximizes the throughput efficiency of ATM layer as a function of TCP/IP packet length for several values of channel BER over wireless ATM LAN links applying data link error control schemes to reduce error problems encountered in using wireless links. For TCP/IP delay-insensitive traffc requiring reliable delivery, it is necessary to adopt data link layer ARQ protocol. So ARQ error control schemes considered in this paper include GBN ARQ, SR ARQ and type-I Hybrid ARQ, which ARQ is needed, but FEC can be used to reduce the number of retransmissions. Especially adaptive type-I Hybrid ARQ scheme is necessary for a variable channel condition to make the physical layer as SONET-like as possible.

Hybrid ARQ scheme using RCPC codes in Wireless (무선 ATM 환경에서 RCPC 코드를 이용한 하이브리드 ARQ 기법)

  • Han, Eun-Jung;Cho, Young-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.7
    • /
    • pp.12-21
    • /
    • 2002
  • In this paper, we propose a new hybrid ARQ scheme to consider real-time and non real-time services in a wireless ATM network. Real-time and non-real-time services require different error control schemes according to each service characteristics. Therefore, in the next generation mobile communication environments where these service scenarios should be deployed, hybrid ARQ scheme using RCPC code with variable coding rate becomes one of the most suitable solutions. Because the variable coding rate is applied according to traits of transmitted frame and channel status, hybrid ARQ scheme using RCPC code can expect UEP effect. The UEP scheme does not apply equal error protection level to all information, but does high error protection level to more important information. In Our scheme, UEP of high error protection level is applied to real-time service, and UEP of low error protection and retransmission techniques are applied to non real-time service. We show that the proposed hybrid ARQ scheme improves channel utilization efficiency and yields high error correction behaviors.

QoS Analysis of Wireless Sensor Network with ARQ Scheme (ARQ 방식을 적용한 무선 센서 네트워크의 QoS 해석)

  • Roh, Jae-Sung;Kim, Wan-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Severe energy constraints and the low power consumption require the significance of the energy efficient error control mechanisms in wireless sensor network (WSN). In this paper, an automatic repeat request (ARQ) methodology for the analysis of error control schemes in WSN is presented such that the effects of packet length, the modulation scheme and the interference effect of the wireless channel are investigated. Moreover, an analyis of ARQ error control is provided by considering two major architectures for wireless sensor network, i.e., Mica2 and MicaZ sensor nodes. And the throughput performance of WSN with asynchronous FSK signal and DSSS-OQPSK signal with selective repeat ARQ scheme are analyzed in multiple interference environment, and the probability of receiving a correct bit and packet from target node to sink node is evaluated as a function of the channel parameter, the number of wireless sensor node, and the spreading factor.

A Rule for Reducing Error Remains in Multicopy Transmission ARQ

  • Shin, Woo-Cheol;Park, Jin-Kyung;Ha, Jun;Choi, Cheon-Won
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.97-106
    • /
    • 2003
  • In ARQ based error control, imperfect error detection leaves error remains on a packet. Aiming for a reduction of error remains in multicopy transmission ARQ system, we propose a rule of requesting a retransmission and deciding a correct copy, (identified as $(m, \;{\sigma})$rule). While the probability of error remains is reduced by the employment of the $(m, \;{\sigma})$ rule at multicopy transmission ARQ, delay and throughput performance may be degraded in comparison with those of conventional single copy transmission ARQ. Thus, we develop an analytical method to evaluate the performance trade-off in multicopy transmission ARQ following the $(m, \;{\sigma})$ rule. From the numerical results obtained by the analytical method, we investigate the effect of channel characteristics on the performance of error remains, packet loss, throughput, and packet delay, and confirm that the adaptability of the $(m, \;{\sigma})$ rule to conform to various QoS requirements with ease.

  • PDF

Performance Analysis of Double-layered ARQ

  • Uhm, Yong-Hun;Park, Cheon-Won
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.85-88
    • /
    • 2001
  • In this paper, we propose a retransmission based error control scheme in which a stop-and-wait ARQ is simultaneously performed in two adjacent layers for the node-to-node error control. We develop an analytical numerical method to calculate the probability of error remains and the moments of the high layer message delay time at steady state. Using the analytical method, we investigate the performance of double-layered ARQ scheme with respect to the properties of the employed CRC codes and the characteristics of the involved channel.

  • PDF

Adaptive Error Control Based on Traffic Type and Channel Error Rate in Wireless ATM (무선 ATM에서의 트래픽 형태 및 채널 오율에 기반한 적응 오류 제어)

  • 김영웅;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10A
    • /
    • pp.1532-1538
    • /
    • 1999
  • In general, because error rate of wireless link is higher than that of wired link, DLC layer protocol for wired network with low error rate is not proper for wireless environments. In addition, the conventional DLC layer protocol for wireless network is optimized for the low-speed data service, so it is difficult to use conventional DLC protocol in the current mobile communication environments handing high-speed and multimedia services. Therefore, a DLC layer protocol that is suitable to current wireless communication environments is required. In this paper, we propose a novel error control scheme that supports a variety of traffic attribute and is applicable to high-speed and multimedia data service in WATM. The proposed scheme provides enhanced throughput performance for real-time traffic by using modified ASR ARQ without ACK and reduces loss rate by using FEC in the case of high error condition. Also, for non real-time traffic, the use of ASR ARQ without ACK enhances throughput performance and delay time is decreased by using FEC in the case of high error rate channel. As a result of simulation, the proposed scheme has better performance than conventional ASR ARQ protocol in view of delay and throughput.

  • PDF

Performance of ARQ-aided Downlink Time Switched Transmit Diversity with multi-level Control Signaling in the WCDMA LCR-TDD System (WCDMA LCR-TDD 시스템에서 다중 레벨 제어 시그날링이 적용된 ARQ 기반 하향링크 TSTD의 성능)

  • Jeon, Cha-Eul;Hwang, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.61-68
    • /
    • 2010
  • In this paper, we investigate the performance of ARQ-aided Time Switched Transmit Diversity (ARQ-TSTD) applying the multi-level control signaling in the WCDMA LCR-TDD system. Proposed ARQ-TSTD system applies the multi-level control signaling scheme in which the receiver sends the response signal (ACK or NACK signal) to the transmitter and defines NACK2 signal for multi-level control. Transmitter utilize the NACK2 control signal to the postponement of transmission and multi-user scheduling scheme proposed by this paper. Simulation results demonstrate that the proposed postponement of transmission and multi-user scheduling scheme yield about 1.3dB, 1.4dB performance gain respectively, compared with the conventional ARQ-TSTD with antenna switching scheme in tenn of the frame error rate (FER) for mobile speed of 3km/h and FER value of 10%. In addition, 14% and 11.5% of throughput gain respectively is shown when Eb/N0=-3dB.

A Hybrid Scheme of the Transport Error Control for SVC Video Streaming (SVC 비디오 스트리밍을 위한 복합형 전송 오류 제어 기법)

  • Seo, Kwang-Deok;Moon, Chul-Wook;Jung, Soon-Heung;Kim, Jin-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.1
    • /
    • pp.34-42
    • /
    • 2009
  • In this paper, we propose a practical hybrid transport error control scheme to provide SVC video streaming service over error-prone IP networks. Many error control mechanisms for various video coding standards have been proposed in the literature. However, there is little research result which can be practically applicable to the multilayered coding structure of SVC(the scalable extension of H.264/AVC). We present a new hybrid transport error control scheme that efficiently combines layered Forward Error Correction(FEC) and Automatic Repeat Request(ARQ) for better packet-loss resilience. In the proposed hybrid error control, we adopt ACK-based ARQ instead of NACK-based ARQ to maximize throughput which is the amount of effective data packets delivered over a physical link per time unit. In order to prove the effectiveness of the proposed hybrid error control scheme, we adopt NIST-Net network emulator which is a general-purpose tool for emulating performance dynamics in IP networks. It is shown by simulations over the NIST-Net that the proposed hybrid error control scheme shows improved packet-loss resilience even with much less number of overhead packets compared to various conventional error control schemes.