• Title/Summary/Keyword: ARPS

Search Result 22, Processing Time 0.021 seconds

Effect of the Piling Work Noise on the Behavior of Snakehead (Channa argus) in the Aquafarm (양식 가물치 (Channa argus)의 행동에 미치는 파일작업 소음의 영향에 관한 연구)

  • SHIN Hyeon Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.492-502
    • /
    • 1995
  • This paper describes the relationship between the behavior of the snakehead ( Channa arps) of 44cm long and the environmental noise levels due to the piling work. The experiment is conducted in the aquafarm located near Asan lake, Pyongtaek in 1993. The fish trajectory is obtained by a biotelemetry system in which a pulsed ultrasonic pinger attached onto the dorsal is tracked three dimensionally, and the noise and the vibration levels both in air and in water are measured. The results of this study are as follows: 1) The noise levels in water and in air and the vibration level measured at a distance of 90m from the noise source, increased by 36.5dB $(re\;l{\mu}Pa)$, 2308$(re\;0.0002{\mu}bar)$ and $5.9{\mu}m$ repectively compared to the levers before piling. 2) The highest variation of the swimming speed was observed right after the piling works and the width of variation decreased with the elapsed time. The average speeds of the fish before and during the works were measured as 0.8 times and 1.1 times of the body length, respectively. 3) It is found that the fish escapes into the mud of the aquafarm when a heavy shock wave occurred. Consequently, the heavy shock by the piling works could produce a considerably unfavorable effect to the fish.

  • PDF

A Study on Viscous Damping System of a Ship with Anti-Rolling Pendulum (안티롤링 진자를 장치한 선박의 점성감쇠계 해석에 대한 연구)

  • Park, Sok-Chu;Jang, Kwang-Ho;Yi, Geum-Joo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.365-372
    • /
    • 2017
  • The rolling motion of a floating body makes crews and passengers exhausted and/or applies forces to the structure to cause damage; it might even upset the body. Therefore, almost all ships are equipped with bilge keels for anti-rolling; in special cases, an anti-rolling tank(ART) or fin stabilizer or gyroscope could be installed. But an ART requires a large capacity to install it, and a fin stabilizer and gyroscope need great costs to install and also many expenses to operate. The authors suggest the use of an anti-rolling pendulum(ARP), and they showed that the ARP is effective to reduce rolling by experiments and via a Runge-Kutta analysis. This paper introduces the linearized 2 degrees of freedom with a viscous damping system for a ship equipped with ARP; it also shows the validation of the linearized analysis for the ship's roll motion. The paper proposes an optimum ARP on the basis of the justified model. The case of the 7.7kg model with ship 20g ARP of a mass ratio of 0.26%, is the most effective for reducing roll motion. The paper shows the ARPs with various mass ratios are effective for reducing the roll motion of a ship by free decaying roll experiments.