• Title/Summary/Keyword: ARMA(Auto Regressive Moving Average) Model

Search Result 13, Processing Time 0.023 seconds

A Study on the System Identification of Tool Breakage Detection in Turning (선삭가공에서 공구파손 검출 시스템 인식에 관한 연구)

  • 사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.40-45
    • /
    • 1999
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc.In this study, time series sequence of cutting force was acquired by taking advantage of piezoelectric type tool dynamometer. Radial cutting force was obtained from it and was available for useful observation data. The parameter was estimated using PAA (parameter adaptation algorithm) from observation data. ARMA(auto regressive moving average) model was selected for system model and second order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter.

  • PDF

Gust Response and Active Suppress based on Reduced Order Models

  • Yang, Guowei;Nie, Xueyuan;Zheng, Guannan
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • A gust response analyses method based on Reduced Order Models (ROMs) was developed in the paper. Firstly, taken random signal as the input signal and adopt Single Input-Multi-Output (SIMO) training fashion, a ROM based on Auto-Regressive and Moving Average model (ARMA) was established and validated with the comparison of CFD/CSD and experiment. Then, by introducing control surface deflection and control laws, flutter active suppress was studied. Lastly, through filtering and transferring function, the gust temporal signal is obtained based on Dryden gust model, and gust response and suppress were simulated.

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.