• Title/Summary/Keyword: ARINC

Search Result 42, Processing Time 0.014 seconds

Design Method for Integrated Modular Avionics System Architecture (Integrated Modular Avionics 컴퓨터 아키텍처의 설계방안)

  • Park, Han-Joon;Go, Kwang-Chun;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1094-1103
    • /
    • 2014
  • In this paper, we survey the works related to the system architecture of avionics and extract characteristics from the related works. On the basis of the investigation, we propose an integrated modular avionics (IMA) architecture that can be used for current avionic upgrades and future avionic developments based on the IMA Core system. To verify the feasibility of the proposed IMA architecture, we have developed the prototype of the IMA Core system that consists of both the common hardware module and the IMA software. It was verified that the developed prototype with the common hardware module contributes to the improvement of maintainability because it can save the time and expenses for the development and can reduce the number of types of hardware modules when compared with Federated architecture. It was also confirmed that the developed prototype can save not only overall system weight, size, and power consumption but also the number of hardware types because the IMA software can support the integrated processing where the single processing hardware module can process multiple software applications.

Implementation and Performance Analysis of Partition-based Secure Real-Time Operating System (파티션 기반 보안 실시간 운영체제의 구현 및 성능 분석)

  • Kyungdeok Seo;Woojin Lee;Byeongmin Chae;Hoonkyu Kim;Sanghoon Lee
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.99-111
    • /
    • 2022
  • With current battlefield environment relying heavily on Network Centric Warfare(NCW), existing weaponary systems are evolving into a new concept that converges IT technology. Majority of the weaponary systems are implemented with numerous embedded softwares which makes such softwares a key factor influencing the performance of such systems. Furthermore, due to the advancements in both IoT technoogies and embedded softwares cyber threats are targeting various embedded systems as their scope of application expands in the real world. Weaponary systems have been developed in various forms from single systems to interlocking networks. hence, system level cyber security is more favorable compared to application level cyber security. In this paper, a secure real-time operating system has been designed, implemented and measured to protect embedded softwares used in weaponary systems from unknown cyber threats at the operating system level.