• Title/Summary/Keyword: ARIMA Seasonal Model

Search Result 94, Processing Time 0.031 seconds

Effectiveness Evaluation of Demand Forecasting Based Inventory Management Model for SME Manufacturing Factory (중소기업 제조공장의 수요예측 기반 재고관리 모델의 효용성 평가)

  • Kim, Jeong-A;Jeong, Jongpil;Lee, Tae-hyun;Bae, Sangmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • SMEs manufacturing Factory, which are small-scale production systems of various types, mass-produce and sell products in order to meet customer needs. This means that the company has an excessive amount of material supply to reduce the loss due to lack of inventory and high inventory maintenance cost. And the products that fail to respond to the demand are piled up in the management warehouse, which is the reality that the storage cost is incurred. To overcome this problem, this paper uses ARIMA model, a time series analysis technique, to predict demand in terms of seasonal factors. In this way, demand forecasting model based on economic order quantity model was developed to prevent stock shortage risk. Simulation is carried out to evaluate the effectiveness of the development model and to demonstrate the effectiveness of the development model as applied to SMEs in the future.

IoT Utilization for Predicting the Risk of Circulatory System Diseases and Medical Expenses Due to Short-term Carbon Monoxide Exposure (일산화탄소 단기 노출에 따른 순환계통 질환 위험과 진료비용 예측을 위한 IoT 활용 방안)

  • Lee, Sangho;Cho, Kwangmoon
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.7-14
    • /
    • 2020
  • This study analyzed the effect of the number of deaths of circulatory system diseases according to 12-day short-term exposure of carbon monoxide from January 2010 to December 2018, and predicted the future treatment cost of circulatory system diseases according to increased carbon monoxide concentration. Data were extracted from Air Korea of Korea Environment Corporation and Korea Statistical Office, and analyzed using Poisson regression analysis and ARIMA intervention model. For statistical processing, SPSS Ver. 21.0 program was used. The results of the study are as follows. First, as a result of analyzing the relationship between the impact of short-term carbon monoxide exposure on death of circulatory system diseases from the day to the previous 11 days, it was found that the previous 11 days had the highest impact. Second, with the increase in carbon monoxide concentration, the future circulatory system disease treatment cost was estimated at 10,123 billion won in 2019, higher than the observed value of 9,443 billion won at the end of December 2018. In addition, when summarized by month, it can be seen that the cost of treatment for circulatory diseases increases from January to December, reflecting seasonal fluctuations. Through such research, the future for a healthy life for all citizens can be realized by distributing various devices and equipment utilizing IoT to preemptively respond to the increase in air pollutants such as carbon monoxide.

Fluctuations and Time Series Forecasting of Sea Surface Temperature at Yeosu Coast in Korea (여수연안 표면수온의 변동 특성과 시계열적 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun Ho;Jeon, Sang-Back
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Seasonal variations and long term linear trends of SST (Sea Surface Temperature) at Yeosu Coast ($127^{\circ}37.73^{\prime}E$, $34^{\circ}37.60^{\prime}N$) in Korea were studied performing the harmonic analysis and the regression analysis of the monthly mean SST data of 46 years (1965-2010) collected by the Fisheries Research and Development Institute in Korea. The mean SST and the amplitude of annual SST variation show $15.6^{\circ}C$ and $9.0^{\circ}C$ respectively. The phase of annual SST variation is $236^{\circ}$. The maximum SST at Yeosu Coast occurs around August 26. Climatic changes in annual mean SST have had significant increasing tendency with increase rate $0.0305^{\circ}C/Year$. The warming trend in recent 30 years (1981-2010) is more pronounced than that in the last 30 years (1966-1995) and the increasing tendency of winter SST dominates that of the annual SST. The time series model that could be used to forecast the SST on a monthly basis was developed applying Box-Jenkins methodology. $ARIMA(1,0,0)(2,1,0)_{12}$ was suggested for forecasting the monthly mean SST at Yeosu Coast in Korea. Mean absolute percentage error to measure the accuracy of forecasted values was 8.3%.

Estimation on the Future Traffic Volumes and Analysis on Information Value of Tidal Current Signal in Incheon (인천항의 장래 교통량 추정 및 조류신호의 정보가치 분석)

  • Kim, Jung-Hoon;Kim, Se-Won;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.455-462
    • /
    • 2007
  • This paper estimated the future traffic volume incoming and outgoing in Incheon port, and analyzed the value of information serviced by tidal current signal operation center in Incheon. The cargo traffic in 2020 will increase twice as much as in 2005 according to the national ports basis plan. The maritime traffic will increase greatly consequently. Also, MOMAF has operated tidal current signal operation center to prevent marine accidents caused by current influence on vessels navigating through Incheon. However the quantitative effect is not known because there is no analysis about its value. Therefore the value of information serviced by tidal current signal operation center in Incheon was calculated with contingent valuation method(CVM), and the information value was analyzed considering future traffic in this study. Thus, the annual information value was calculated at about $170{\sim}280$ million won, considered traffic volume using the information of tidal current directly in 2020 since 2006.

Prediction of Covid-19 confirmed number of cases using SARIMA model (SARIMA모형을 이용한 코로나19 확진자수 예측)

  • Kim, Jae-Ho;Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • The daily number of confirmed cases of Coronavirus disease 2019(COVID-19) ranges between 1,000 and 2,000. Despite higher vaccination rates, the number of confirmed cases continues to increase. The Mu variant of COVID-19 reported in some countries by WHO has been identified in Korea. In this study, we predicted the number of confirmed COVID-19 cases in Korea using the SARIMA for the Covid-19 prevention strategy. Trends and seasonality were observed in the data, and the ADF Test and KPSS Test was used accordingly. Order determination of the SARIMA(p,d,q)(P, D, Q, S) model helped in extracting the values of p, d, q, P, D, and Q parameters. After deducing the p and q parameters using ACF and PACF, the data were transformed and schematized into stationary forms through difference, log transformation, and seasonality removal. If seasonality appears, first determine S, then SARIMA P, D, Q, and finally determine ARIMA p, d, q using ACF and PACF for the order excluding seasonality.

Monthly rainfall forecast of Bangladesh using autoregressive integrated moving average method

  • Mahmud, Ishtiak;Bari, Sheikh Hefzul;Rahman, M. Tauhid Ur
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • Rainfall is one of the most important phenomena of the natural system. In Bangladesh, agriculture largely depends on the intensity and variability of rainfall. Therefore, an early indication of possible rainfall can help to solve several problems related to agriculture, climate change and natural hazards like flood and drought. Rainfall forecasting could play a significant role in the planning and management of water resource systems also. In this study, univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used to forecast monthly rainfall for twelve months lead-time for thirty rainfall stations of Bangladesh. The best SARIMA model was chosen based on the RMSE and normalized BIC criteria. A validation check for each station was performed on residual series. Residuals were found white noise at almost all stations. Besides, lack of fit test and normalized BIC confirms all the models were fitted satisfactorily. The predicted results from the selected models were compared with the observed data to determine prediction precision. We found that selected models predicted monthly rainfall with a reasonable accuracy. Therefore, year-long rainfall can be forecasted using these models.

Forecasting Foreign Visitors using SARIMAX Models with the Exogenous Variable of Demand Decrease (수요감소 요인 외생변수를 갖는 SARIMAX 모형을 이용한 관광수요 예측)

  • Lee, Geun-Cheol;Choi, Seong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, we consider the problem of forecasting the number of inbound foreigners visiting Korea. Forecasting tourism demand is an essential decision to plan related facilities and staffs, thus many studies have been carried out, mainly focusing on the number of inbound or outbound tourists. In order to forecast tourism demand, we use a seasonal ARIMA (SARIMA) model, as well as a SARIMAX model which additionally comprises an exogenous variable affecting the dependent variable, i.e., tourism demand. For constructing the forecasting model, we use a search procedure that can be used to determine the values of the orders of the SARIMA and SARIMAX. For the exogenous variable, we introduce factors that could cause the tourism demand reduction, such as the 9/11 attack, the SARS and MERS epidemic, and the deployment of THAAD. In this study, we propose a procedure, called Measuring Impact on Demand (MID), where the impact of each factor on tourism demand is measured and the value of the exogenous variable corresponding to the factor is determined based on the measurement. To show the performance of the proposed forecasting method, an empirical analysis was conducted where the monthly number of foreign visitors in 2019 were forecasted. It was shown that the proposed method can find more accurate forecasts than other benchmarks in terms of the mean absolute percentage error (MAPE).

Short-term Construction Investment Forecasting Model in Korea (건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較))

  • Kim, Kwan-young;Lee, Chang-soo
    • KDI Journal of Economic Policy
    • /
    • v.14 no.1
    • /
    • pp.121-145
    • /
    • 1992
  • This paper examines characteristics of time series data related to the construction investment(stationarity and time series components such as secular trend, cyclical fluctuation, seasonal variation, and random change) and surveys predictibility, fitness, and explicability of independent variables of various models to build a short-term construction investment forecasting model suitable for current economic circumstances. Unit root test, autocorrelation coefficient and spectral density function analysis show that related time series data do not have unit roots, fluctuate cyclically, and are largely explicated by lagged variables. Moreover it is very important for the short-term construction investment forecasting to grasp time lag relation between construction investment series and leading indicators such as building construction permits and value of construction orders received. In chapter 3, we explicate 7 forecasting models; Univariate time series model (ARIMA and multiplicative linear trend model), multivariate time series model using leading indicators (1st order autoregressive model, vector autoregressive model and error correction model) and multivariate time series model using National Accounts data (simple reduced form model disconnected from simultaneous macroeconomic model and VAR model). These models are examined by 4 statistical tools that are average absolute error, root mean square error, adjusted coefficient of determination, and Durbin-Watson statistic. This analysis proves two facts. First, multivariate models are more suitable than univariate models in the point that forecasting error of multivariate models tend to decrease in contrast to the case of latter. Second, VAR model is superior than any other multivariate models; average absolute prediction error and root mean square error of VAR model are quitely low and adjusted coefficient of determination is higher. This conclusion is reasonable when we consider current construction investment has sustained overheating growth more than secular trend.

  • PDF

Development of Long-Term Electricity Demand Forecasting Model using Sliding Period Learning and Characteristics of Major Districts (주요 지역별 특성과 이동 기간 학습 기법을 활용한 장기 전력수요 예측 모형 개발)

  • Gong, InTaek;Jeong, Dabeen;Bak, Sang-A;Song, Sanghwa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2019
  • For power energy, optimal generation and distribution plans based on accurate demand forecasts are necessary because it is not recoverable after they have been delivered to users through power generation and transmission processes. Failure to predict power demand can cause various social and economic problems, such as a massive power outage in September 2011. In previous studies on forecasting power demand, ARIMA, neural network models, and other methods were developed. However, limitations such as the use of the national average ambient air temperature and the application of uniform criteria to distinguish seasonality are causing distortion of data or performance degradation of the predictive model. In order to improve the performance of the power demand prediction model, we divided Korea into five major regions, and the power demand prediction model of the linear regression model and the neural network model were developed, reflecting seasonal characteristics through regional characteristics and migration period learning techniques. With the proposed approach, it seems possible to forecast the future demand in short term as well as in long term. Also, it is possible to consider various events and exceptional cases during a certain period.

  • PDF

Development of hybrid stochastic model for rainfall generation considering rainfall inter-annual variability (연간 강우 변동성을 고려한 혼합 추계 강우 생성 모형의 개발)

  • Park, Jeong Ha;Kim, Dong Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.11-11
    • /
    • 2018
  • 본 연구에서는 1시간부터 1년 단위의 강우 특성들을 잘 모의하는 혼합 추계 강우 생성 모형을 개발하였다. 본 모형의 가상 강우 생성 과정은 4단계로 이루어진다. 첫 단계에서 Seasonal ARIMA 모형을 통하여 시계열 특성을 반영한 월 강우를 생성한다. 두 번째 단계는 생성된 월 강우에 해당하는 일 단위 이하의 강우 통계치 세트를 생성하는 것이며, 통계치간 상관관계를 통해 평균, 표준편차, 자기상관 계수, 무강우 확률을 생성한다. 생성된 통계치 세트는 세 번째 단계에서 Modified Bartlett-Lewis Rectangular Pulse (MBLRP) 모형의 6개의 매개변수를 보정하는데 사용되며, 마지막으로 MBLRP 매개변수 세트를 통해 가상 강우 시계열을 생성한다. 위 모형을 통해 미국 동부 지역 29개 강우 관측소에 대하여 200년 길이의 가상 강우를 생성하였으며, 그 결과 시 단위부터 연 단위까지 강우의 1차, 2차 통계치 및 무강우 확률을 성공적으로 재현하였다. 또한 기존 MBLRP 모형에 비하여 극한 강우 사상을 재현하는 능력이 향상되었다. 빈도분석 결과를 통하여 MBLRP 모형이 재현기간에 따라 10%에서부터 40%까지 극한 사상을 과소 추정한 반면, 본 모형에서는 20% 이내의 값을 나타내었다.

  • PDF