The Journal of The Korea Institute of Intelligent Transport Systems
/
v.12
no.4
/
pp.1-10
/
2013
This study was conducted to investigate that bus information was used as an information of travel speed. To determine the travel speed on the road, bus information and the information collected from the point detector and the interval detection installed were compared. If bus information has the function of traffic information detector, can provide the travel speed information to road users. To this end, the model of recognizing the traffic patterns is necessary. This study used simple moving-average method, simple exponential smoothing method, Double moving average method, Double exponential smoothing method, ARIMA(Autoregressive integrated moving average model) as the existing methods rather than new approach methods. This study suggested the possibility to replace bus information system into other information collection system.
Kim, Seon Tae;Kim, Min Su;Park, Sang Beom;Lee, Joon Il
Journal of the Korean Society for Aviation and Aeronautics
/
v.21
no.4
/
pp.77-89
/
2013
The purpose of this study is to anticipate the air travel demands over the period of 164 months, from January 1997 to August 2010 using ARIMA-Intervention modeling on the selected sample data. The sample data is composed of the number of the passengers who in the domestic route for Jeju route. In the analysis work of this study, the past events which are assumed to have affected the demands for the air travel routes to Jeju in different periods were used as the intervention variables. The impacts of such variables were reflected in the presupposed demand. The intervention variables used in this study are, respectively, the World Cup event in 2002 (from May to June), 2003 SARS outbreak (from April to May), Tsunami in January 2005, and the influenza outbreak from October to December 2009. The result of the above mentioned analysis revealed that the negative intervention events, like a global outbreak of an epidemic did have negative impact on the air travel demands in a risk aversion by the users of the aviation services. However, in case of the negative intervention events in limited area, where there are possible substituting destinations for the tourists, the impact was positive in terms of the air travel demands for substituting destinations due to the rational expectation of the users as they searched for other options. Also in this study, it was discovered that there is not a binding correlation between a nation wide mega-event, such as the World Cup games in 2002, and the increased air travel demands over a short-term period.
Port congestion rate at Busan Port has increased for three years. Port congestion causes container reconditioning, which increases the dockyard labor's work intensity and ship owner's waiting time. If congestion is prolonged, it can cause a drop in port service levels. Therefore, this study proposed an anomaly detection method using ARIMA(Autoregressive Integrated Moving Average) model with the daily volume data from 2013 to 2020. Most of the research that predicts port volume is mainly focusing on long-term forecasting. Furthermore, studies suggesting methods to utilize demand forecasting in terms of port operations are hard to find. Therefore, this study proposes a way to use daily demand forecasting for port anomaly detection to solve the congestion problem at Busan port.
Recent expansion in cloud service usage has heightened the importance of cloud security. The purpose of this study is to analyze current research trends in the field of cloud security and to derive implications. To this end, R&D project data provided by the National Science and Technology Knowledge Information Service (NTIS) from 2010 to 2023 was utilized to analyze trends in cloud security research. Fifteen core topics in cloud security research were identified using LDA topic modeling and ARIMA time series analysis. Key areas identified in the research include AI-powered security technologies, privacy and data security, and solving security issues in IoT environments. This highlights the need for research to address security threats that may arise due to the proliferation of cloud technologies and the digital transformation of infrastructure. Based on the derived topics, the field of cloud security was divided into four categories to define a technology reference model, which was improved through expert interviews. This study is expected to guide the future direction of cloud security development and provide important guidelines for future research and investment in academia and industry.
Communications for Statistical Applications and Methods
/
v.19
no.3
/
pp.415-422
/
2012
In this paper, we first the compare the performance of Holt-Winters, FSARIMA, AR-GARCH and Seasonal AR-GARCH models with in the short term based data. The results of the compared data show that the Holt-Winters model outperformed other models in terms of forecasting accuracy.
Journal of Korean Institute of Industrial Engineers
/
v.28
no.2
/
pp.171-177
/
2002
In this paper, we propose a new data fusion method to improve the performance of individual prediction models for time series data. Individual models used are ARIMA and neural network and their results are combined based on the weight reflecting the inverse of EWMA of squared prediction error of each individual model. Monte Carlo simulation is used to identify the situation where the proposed approach can take a vintage point over typical fusion methods which utilize MSE for weight. Study results indicate the following: EWMA performs better than MSE fusion when the data size is large with a relatively big amplitude, which is often observed in intra-cranial pressure data. Additionally, EWMA turns out to be a best choice among MSE fusion and the two individual prediction models when the data size is large with relatively small random noises, often appearing in tax revenue data.
Kim, Dae-Yong;Lee, Chan-Joo;Lee, Myung-Hwan;Park, Jong-Bae;Shin, Joong-Rin
Proceedings of the KIEE Conference
/
2005.07a
/
pp.819-821
/
2005
Since the System Marginal Price (SMP) is a vital factor to the market entities who intend to maximize the their profit, the short-term marginal price forecasting should be performed correctly. In a electricity market, the short-term trading between the market entities can be generally affected a short-term market price. Therefore, the exact forecasting of SMP can influence on the profit of market participants. This paper presents a methodology of day-ahead SMP foretasting using Autoregressive Integrated Moving Average (ARIMA). To show the efficiency and effectiveness of the proposed method, the numerical studies have been performed using historical data of SMP in 2004.
The scheduling of plant should be determined based on the product demands correctly forecasted by reasonable methods. However, because most existing forecasting packages need user's knowledge about forecasting, it has been hard for plant engineers without forecasting knowledge to apply forecasted demands to scheduling. Therefore, a forecasting module has been developed for plant engineers without forecasting knowledge. In this study, for the development of the forecasting module, an automatic method using the ARIMA model that is framed from the modified Box-Jenkins process is proposed. And a new method for safety inventory determination is proposed to reduce the penalty cost by forecasting errors. Finally, using the two proposed methods, the web-based automatic module has been developed.
Purposes: This study aims to investigate the number of cataract surgeries and predict future trends using 13-year data. Methodology: Trends investigation and comparison of prediction methods was conducted to determine better prediction model using Major Surgery Statistics from Korean Statistical Information Service in 2006-2018. ARIMA(Auto Regressive Integrated Moving Average) was selected and prediction was conducted using R program. Findings: As a results, the number of surgeries will continue to increase. The trends was predicted to increase during January-April, and it declined over time and was the lowest in August. Pratical Implications: Therefore, it is necessary that management will be needed by continuously investigating and predicting the demand and trend for surgery to prepare an alternative to the increase.
Kim, Dong-Hyun;Kim, Min-Woo;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
Proceedings of the Korean Society of Computer Information Conference
/
2018.07a
/
pp.141-142
/
2018
기존 데이터의 패턴 예측에는 통계를 기반으로 한 수학적 모델이 주로 사용되었으나 새로운 데이터에 대한 피드백이 부족하기 때문에 장기간의 데이터 예측에 한계가 있다. 또한 데이터의 특성이 다양하고 복잡한 경우에는 수학적 모델의 결합 및 계산과정이 어려워진다. 따라서 본 논문에서는 데이터의 학습 및 예측에 기존 정적 모델이 아닌 기계학습 중 시계열 데이터 분석 (Time Series Analysis) 을 기반으로 연구를 진행하였다. 기계학습은 복잡한 특성을 가진 데이터를 학습하여 미래의 데이터 값을 예측하거나 분류하는데 있어서 정확도 및 처리시간 측면에서의 성능을 향상시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.