• Title/Summary/Keyword: ARIMA Model

Search Result 369, Processing Time 0.026 seconds

Analysis of Global Shipping Market Status and Forecasting the Container Freight Volume of Busan New port using Time-series Model (글로벌 해운시장 현황 분석 및 시계열 모형을 이용한 부산 신항 컨테이너 물동량 예측에 관한 연구)

  • JO, Jun-Ho;Byon, Je-Seop;Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2017
  • In this paper, we analyze the trends of the international shipping market and the domestic and foreign factors of the crisis of the domestic shipping market, and identify the characteristics of the recovery of the Busan New Port trade volume which has decreased since the crisis of the domestic shipping market We quantitatively analyzed the future volume of Busan New Port and analyzed the trends of the prediction and recovery trends. As a result of analyzing Busan New Port container cargo volume by using big data analysis tool R, the variation of Busan New Cargo container cargo volume was estimated by ARIMA model (1,0,1) (1,0,1)[12] Estimation error, AICc and BIC were the most optimal ARIMA models. Therefore, we estimated the estimated value of Busan New Port trade for 36 months by using ARIMA (1, 0, 1)[12], which is the optimal model of Busan New Port trade, and estimated 13,157,184 TEU, 13,418,123 TEU, 13,539,884 TEU, and 4,526,406 TEU, respectively, indicating that it increased by about 2%, 2%, and 1%.

Prediction of Covid-19 confirmed number of cases using ARIMA model (ARIMA모형을 이용한 코로나19 확진자수 예측)

  • Kim, Jae-Ho;Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1756-1761
    • /
    • 2021
  • Although the COVID-19 outbreak that occurred in Wuhan, Hubei around December 2019, seemed to be gradually decreasing, it was gradually increasing as of November 2020 and June 2021, and estimated confirmed cases were 192 million worldwide and approximately 184 thousand in South Korea. The Central Disaster and Safety Countermeasures Headquarters have been taking strong countermeasures by implementing level 4 social distancing. However, as the highly infectious COVID-19 variants, such as Delta mutation, have been on the rise, the number of daily confirmed cases in Korea has increased to 1,800. Therefore, the number of cumulative confirmed COVID-19 cases is predicted using ARIMA algorithms to emphasize the severity of COVID-19. In the process, differences are used to remove trends and seasonality, and p, d, and q values are determined and forecasted in ARIMA using MA, AR, autocorrelation functions, and partial autocorrelation functions. Finally, forecast and actual values are compared to evaluate how well it was forecasted.

Forecasting of Dissolved Oxygen at Kongju Station using a Transfer Function Noise Model (전이함수잡음모형에 의한 공주지점의 용존산소 예측)

  • 류병로;조정석;한양수
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.349-354
    • /
    • 1999
  • The transfer function was introduced to establish the prediction method for the DO concentration at the intaking point of Kongju Water Works System. In the mose cases we analyze a single time series without explicitly using information contained in the related time series. In many forecasting situations, other events will systematically influence the series to be forecasted(the dependent variables), and therefore, there is need to go beyond a univariate forecasting model. Thus, we must bulid a forecasting model that incorporates more than one time series and introduces explicitly the dynamic characteristics of the system. Such a model is called a multiple time series model or transfer function model. The purpose of this study is to develop the stochastic stream water quality model for the intaking station of Kongju city waterworks in Keum river system. The performance of the multiplicative ARIMA model and the transfer function noise model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the transfer function noise model lead to the improved accuracy.

  • PDF

A Study on the Estimation of Economic Population Statistical Model by Computer Simulation (컴퓨터 시뮬레이션에 의한 경제인구 예측 통계 모형에 관한 연구)

  • 정관희
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.1033-1042
    • /
    • 2003
  • In this study, the economic population prediction by computer simulation has been studied by using statistical model. The forecast of future population based on that of the past is a very difficult problem as uncertain conditions are modeled in it. Even if a thought forecast is possible, world-wide cultures and the local culture emotion the cultures of the world and out country can not be predicted due to rapid change and the estimation of population is ‘nowadays more and more’ difficult to be made good guess. In the estimation of economic population, by using the census population from 1960 to 1990, and using ARIMA model developed by Box and Jenkins, the estimation has been done on the economic population until 2021 according to age as appeared table and appendix. This kind of forecast would have both good point and weak point of ARIMA model theory saying that prediction can be done only by the economic population.

  • PDF

A Study on Traffic Anomaly Detection Scheme Based Time Series Model (시계열 모델 기반 트래픽 이상 징후 탐지 기법에 관한 연구)

  • Cho, Kang-Hong;Lee, Do-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.304-309
    • /
    • 2008
  • This paper propose the traffic anomaly detection scheme based time series model. We apply ARIMA prediction model to this scheme and transform the value of the abnormal symptom into the probability value to maximize the traffic anomaly symptom detection. For this, we have evaluated the abnormal detection performance for the proposed model using total traffic and web traffic included the attack traffic. We will expect to have an great effect if this scheme is included in some network based intrusion detection system.

Learning Algorithm of Dynamic Threshold in Line Utilization based SARIMA model (SARIMA 모델을 기반으로 한 선로 이용률의 동적 임계값 학습 기법)

  • Cho, Kagn-Hong;Ahn, Seong-Jin;Chung, Jin-Wook
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.841-846
    • /
    • 2002
  • We applies a seasonal ARIMA model to the timely forecasting in a line utilization and its confidence interval on the base of the past data of the line utilization that QoS of the network is greatly influenced by. And this paper proposes the learning algorithm of dynamic threshold in line utilization using the SARIMA model. We can find the proper dynamic threshold in timely line utilization on the various network environments and provide the confidence based on probability. Also, we have evaluated the validity of the proposed model and estimated the value of a proper threshold on real network. Network manager can overcome a shortcoming of original threshold method and maximize the performance of this algorithm.

Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information (기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Recently, since responding to meteorological changes depending on increasing greenhouse gas and electricity demand, the importance prediction of photovoltaic power (PV) is rapidly increasing. In particular, the prediction of PV power generation may help to determine a reasonable price of electricity, and solve the problem addressed such as a system stability and electricity production balance. However, since the dynamic changes of meteorological values such as solar radiation, cloudiness, and temperature, and seasonal changes, the accurate long-term PV power prediction is significantly challenging. Therefore, in this paper, we propose PV power prediction model based on deep learning that can be improved the PV power prediction performance by learning to use meteorological and seasonal information. We evaluate the performances using the proposed model compared to seasonal ARIMA (S-ARIMA) model, which is one of the typical time series methods, and ANN model, which is one hidden layer. As the experiment results using real-world dataset, the proposed model shows the best performance. It means that the proposed model shows positive impact on improving the PV power forecast performance.

A Model for Groundwater Time-series from the Well Field of Riverbank Filtration (강변여과 취수정 주변 지하수위를 위한 시계열 모형)

  • Lee, Sang-Il;Lee, Sang-Ki;Hamm, Se-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.673-680
    • /
    • 2009
  • Alternatives to conventional water resources are being sought due to the scarcity and the poor quality of surface water. Riverbank filtration (RBF) is one of them and considered as a promising source of water supply in some cities. Changwon City has started RBF in 2001 and field data have been accumulated. This study is to develop a time-series model for groundwater level data collected from the pumping area of RBF. The site is Daesan-myeon, Changwon City, where groundwater level data have been measured for the last five years (Jan. 2003$\sim$Dec. 2007). Minute-based groundwater levels was averaged out to monthly data to see the long-term behavior. Time-series analysis was conducted according to the Box-Jenkins method. The resulted model turned out to be a seasonal ARIMA model, and its forecasting performance was satisfactory. We believe this study will provide a prototype for other riverbank filtration sites where the predictability of groundwater level is essential for the reliable supply of water.

Air Passenger Demand Forecasting and Baggage Carousel Expansion: Application to Incheon International Airport (항공 수요예측 및 고객 수하물 컨베이어 확장 모형 연구 : 인천공항을 중심으로)

  • Yoon, Sung Wook;Jeong, Suk Jae
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2014
  • This study deals with capacity expansion planning of airport infrastructure in view of economic validation that reflect construction costs and social benefits according to the reduction of passengers' delay time. We first forecast the airport peak-demand which has a seasonal and cyclical feature with ARIMA model that has been one of the most widely used linear models in time series forecasting. A discrete event simulation model is built for estimating actual delay time of passengers that consider the passenger's dynamic flow within airport infrastructure after arriving at the airport. With the trade-off relationship between cost and benefit, we determine an economic quantity of conveyor that will be expanded. Through the experiment performed with the case study of Incheon international airport, we demonstrate that our approach can be an effective method to solve the airport expansion problem with seasonal passenger arrival and dynamic operational aspects in airport infrastructure.

Predicting the Real Estate Price Index Using Deep Learning (딥 러닝을 이용한 부동산가격지수 예측)

  • Bae, Seong Wan;Yu, Jung Suk
    • Korea Real Estate Review
    • /
    • v.27 no.3
    • /
    • pp.71-86
    • /
    • 2017
  • The purpose of this study was to apply the deep running method to real estate price index predicting and to compare it with the time series analysis method to test the possibility of its application to real estate market forecasting. Various real estate price indices were predicted using the DNN (deep neural networks) and LSTM (long short term memory networks) models, both of which draw on the deep learning method, and the ARIMA (autoregressive integrated moving average) model, which is based on the time seies analysis method. The results of the study showed the following. First, the predictive power of the deep learning method is superior to that of the time series analysis method. Second, among the deep learning models, the predictability of the DNN model is slightly superior to that of the LSTM model. Third, the deep learning method and the ARIMA model are the least reliable tools for predicting the housing sales prices index among the real estate price indices. Drawing on the deep learning method, it is hoped that this study will help enhance the accuracy in predicting the real estate market dynamics.