• 제목/요약/키워드: ARIMA Model

검색결과 369건 처리시간 0.024초

ARIMA model에 의한 서울시 일부지역 $SO_2$ 오염도의 월변화에 대한 시계열분석 (A Time Series Analysis for the Monthly Variation of $SO_2$ in the Certain Areas)

  • 김광진;이상훈;정용
    • 한국대기환경학회지
    • /
    • 제4권2호
    • /
    • pp.72-81
    • /
    • 1988
  • The typical ARIMA model which was developed by Box and Jenkins, was applied to the monthly $SO_2$ data collected at Seoungsoo and Oryudong in metropolitan area over five years, 1982 to 1986. To find out the changing pattern of $SO_2$ concentration, autocorrelation and partial autocorrelation analysis were undertaken. The three steps of time series model building were followed and the residual series was found to be a random white noise. The results of this study is summarized as follows. 1) The monthly $SO_2$ series was found to be a non-stationary series which which has a periodicity of 12 months. After eliminating the periodicity by differencing, the monthly $SO_2$ series became a stationary series. 2) The ARIMA seasonal model of the $SO_2$ was determined to be ARIMA $(1, 0, 0)(0, 1, 0,)_{12}$ model. 3) The model equations based on the prediction were: for Seoungsoodong: $Y_t = 0.5214Y_{t-1} + Y_{t-12} - 0.5214Y_{t-13} + a_t$ for Oryudong: $Y_t = 0.8549Y_{t-1} + Y_{t-12} - 0.8549Y_{t-13} + a_t$ 4) The validity of the model identified was checked by compairing the measured $SO_2$ values and one-month-ahead predicted values. The result of correlation and regression analysis is as follows. Seoungsoodong: $Y = 0.8710X + 0.0062 r = 0.8768$ Oryudong : $Y = 0.8758X + 0.0073 r = 0.9512$

  • PDF

항만경쟁력 제고를 위한 항만교역량 예측 (Forecasting the Port Trading Volumes for Improvement of Port Competitive Power)

  • 손용정
    • 한국항만경제학회지
    • /
    • 제25권1호
    • /
    • pp.1-14
    • /
    • 2009
  • 항만산업의 발전은 저렴하고 효율적인 서비스 제공을 가능하게 함으로써 자국 경제발전을 지원하는 기능을 하는 동시에 독립된 산업으로 부가가치 및 고용창출을 기대할 수 있다. 그러나 국내 주요 항만들은 대내의적인 여건의 변화로 항만교역량 증가세가 둔화되고 있으며 국내 항만의 여건악화는 일시적인 현상이라기보다는 구조적인 현상이라는 점에 문제의 심각성이 있다. 즉, 향후 주요 항만들의 교역량 증가세가 회복될 가능성이 크지 않다는 것이 일반적인 견해이며, 역내 물류중심 기능을 수행할 수 있을 것인지에 대한 회의론 마저 대두되고 있는 실정이다. 항만개발에 소요되는 시간과 재원은 막대하다. 특히 신항개발의 경우 최소 10년 이상의 장기수요 전망 하에 개발계획의 수립이 이루어진다. 따라서 개발계획의 기본이 되는 교역량의 예측의 중요성은 최근 교역량과 관련한 대외적인 환경 변화에 따라 중요성이 더욱 부각되고 있다. 이처럼 산업이 고도화되고 구조도 급격히 변화되고 있는 시대 흐름에 비추어 정확한 물동량예측은 유용하게 이용될 수 있다. 따라서 본고에서는 승법계절 ARIMA모형을 이용하여 국내항만과 중국항만간의 교역량 변화를 예측해보고, 이러한 예측을 통하여 우리나라 항만의 역할과 경쟁력을 갖추기 위한 필요성이 제기됨에 따라 항만의 교역량 중대를 위한 항만활성화 방안을 제시하고자 한다.

  • PDF

Effects of Macroeconomic Conditions and External Shocks for Port Business: Forecasting Cargo Throughput of Busan Port Using ARIMA and VEC Models

  • Nam, Hyung-Sik;D'agostini, Enrico;Kang, Dal-Won
    • 한국항해항만학회지
    • /
    • 제46권5호
    • /
    • pp.449-457
    • /
    • 2022
  • The Port of Busan is currently ranked as the seventh largest container port worldwide in terms of cargo throughput. However, port competition in the Far-East region is fierce. The growth rate of container throughput handled by the port of Busan has recently slowed down. In this study, we analyzed how economic conditions and multiple external shocks could influence cargo throughput and identified potential implications for port business. The aim of this study was to build a model to accurately forecast port throughput using the ARIMA model, which could incorporate external socio-economic shocks, and the VEC model considering causal variables having long-term effects on transshipment cargo. Findings of this study suggest that there are three main areas affecting container throughput in the port of Busan, namely the Russia-Ukraine war, the increased competition for transshipment cargo of Chinese ports, and the weaker growth rate of the Korean economy. Based on the forecast, in order for the Port of the Port of Busan to continue to grow as a logistics hub in Northeast-Asia, policy intervention is necessary to diversify the demand for transshipment cargo and maximize benefits of planned infrastructural investments.

신경망 모형을 적용한 금강 공주지점의 수질예측 (Water Quality Forecasting at Gongju station in Geum River using Neural Network Model)

  • 안상진;연인성;한양수;이재경
    • 한국수자원학회논문집
    • /
    • 제34권6호
    • /
    • pp.701-711
    • /
    • 2001
  • 수질 인자들은 다양하고 관계가 복잡하여 수질 변화를 예측하는데 많은 어려움이 있다. 따라서 입력과 출력이 비교적 용이하고 비선형 예측에 적합한 신경망 모형을 이용하여 금강유역 공주지점의 DO, BOD, TN에 대한 월수질 예측을 수행하고 ARIMA 모형과 비교하여 적용 가능성을 검토하였다. 사용된 신경망 모형은 학습을 위해 BP(Back Propagation) 알고리즘을 적용하였으며 학습을 향상시키기 위한 모멘트-적응학습율(Moment-Adaptive learming rate) 방법을 이용한 MANN 모형, 레번버그-마쿼트(Levenberg-Marquardt) 방법을 이 용한 LMNN 모형, 그리고 정성적인 판단인자를 첨가하여 정량적인 월 수질 자료와 분별, 학습하 도록 은닉층을 분리한 MNN 모형으로 구분하였다. 대체로 신경망 모형의 예측치가 실측치에 근사한 결과를 보였으며, 은닉층을 분리한 MNN 모형이 가장 우수한 결과를 보였다.

  • PDF

Time Series Model을 이용한 주요항만 해상교통량 예측

  • 유상록;정중식;김철승;정재용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2013년도 추계학술대회
    • /
    • pp.133-135
    • /
    • 2013
  • 장래의 해상교통량에 대한 정확한 예측은 항로설계 및 해상교통의 안전성 평가 측면에서 중요한 요소이다. 본 연구는 신뢰성 있는 해상교통량을 추정하기 위해 시계열 모델의 지수평활법과 ARIMA 모형을 이용하여 모형의 식별 및 진단 방안을 제시하였다. 제시된 방법의 효과를 검증하기 위하여 주요항만인 부산항, 광양항, 인천항, 평택항의 해상교통량을 예측하였다. 그 결과로 부산항은 ARIMA 모형, 광양항은 Winters 승법 모형, 인천항은 단순계절 모형, 평택항은 ARIMA 모형이 더 적합한 모형으로 알 수 있었으며, 각 항만별 계절에 따라 월별 교통량의 차이를 보이는 것으로 분석되었다. 본 연구 결과는 향후 항로 및 항만설계 또는 해상교통 안전성 평가에 보다 신뢰성 있는 추정치를 제공할 수 있을 것으로 보인다.

  • PDF

계절 ARIMA모형을 이용한 과거 유입량 분석기간 적용성 연구 (The past Inflow data Period Validit Analysis Using Seasonal ARIMA Model)

  • 김건순;이충대
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1410-1414
    • /
    • 2010
  • 최근 들어 가뭄과 국지성 호우 등의 기상이변이 지속적으로 발생하고 있으며, 이는 국민 삶의 발전과 향상에 밀접한 관계가 있는 것으로 전세계적으로 이에 대한 관심이 증가하고 있는 추세이다. 특히 댐의 효율적 관리와 안정적인 운영은 홍수피해 방지, 안정적인 용수공급과 같은 국민 생활과 밀접한 관계를 가지고 있어 수자원의 효율적인 운영과 이용은 장기적인 관점을 통하여 수립해야 한다. 이와 같이 댐 유입량의 예측은 유출모형의 목적 중 중요한 부분으로 확정론적 모형이 시 혹은 일유량과 같은 매우 짧은 시간의 유출을 예측하는데 주로 사용되지만 이는 매개변수의 추정이 불가능하거나 실제유역에서의 측정이 불가능 할 경우에는 모형적용에 한계가 있다. 이에 반해 추계학적 모형에 의한 유출예측은 장기간의 유출을 과거자료의 통계학적 특성변수를 매개변수로 하여 예측하는 방법으로 모형의 적용에 필요한 매개변수가 적어 그 적용성이 간편한 장점이 있다. 본 연구에서는 계절형 ARIMA모형을 적용하여 과거자료의 적용범위, 매개변수의 산정, 적합성 판정에 대하여 판단하고, 이 모형이 월유입량의 예측에 적합한지를 검토하였다.

  • PDF

ARIMA 모형을 이용한 계통한계가격 예측방법론 개발 (Development of System Marginal Price Forecasting Method Using ARIMA Model)

  • 김대용;이찬주;정윤원;박종배;신종린
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권2호
    • /
    • pp.85-93
    • /
    • 2006
  • Since the SMP(System Marginal Price) is a vital factor to the market participants who intend to maximize the their profit and to the ISO(Independent System Operator) who wish to operate the electricity market in a stable sense, the short-term marginal price forecasting should be performed correctly. In an electricity market the short-term market price affects considerably the short-term trading between the market entities. Therefore, the exact forecasting of SMP can influence on the profit of market participants. This paper presents a new methodology for a day-ahead SMP forecasting using ARIMA(Autoregressive Integrated Moving Average) model based on the time-series method. And also the correction algorithm is proposed to minimize the forecasting error in order to improve the efficiency and accuracy of the SMP forecasting. To show the efficiency and effectiveness of the proposed method, the case studies are performed using historical data of SMP in 2004 published by KPX(Korea Power Exchange).

ARIMA 모형에 기초한 수요실적자료 보정기법 개발 (A Correction Technique of Missing Load Data Based on ARIMA Model)

  • 박종배;이찬주;이재용;신중린;이창호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권7호
    • /
    • pp.405-413
    • /
    • 2004
  • Traditionally, electrical power systems had the vertically-integrated industry structures based on the economics of scale. However power systems have been recently reformed to increase the energy efficiency of the power system. According to these trends, Korean power industry has been partially restructured, and the competitive generation market was opened in 2001. In competitive electric markets, correct demand data are one of the most important issue to maintain the flexible electric markets as well as the reliable power systems. However, the measuring load data can have the uncertainty because of mechanical trouble, communication jamming, and other things. To obtain the reliable load data, an efficient evaluation technique to adust the missing load data is needed. This paper analyzes the load pattern of historical real data and then the turned ARIMA (Autoregressive Integrated Moving Average) model, PCHIP(Piecewise Cubic Interporation) and Branch & Bound method are applied to seek the missing parameters. The proposed method is tested under a variety of conditions and tested with historical measured data from the Korea Energy Management Corporation (KEMCO).

유해가스 배출량에 대한 시계열 예측 모형의 비교연구 (A Comparison Study of Forecasting Time Series Models for the Harmful Gas Emission)

  • 장문수;허요섭;정현상;박소영
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.323-331
    • /
    • 2021
  • With global warming and pollution problems, accurate forecasting of the harmful gases would be an essential alarm in our life. In this paper, we forecast the emission of the five gases(SOx, NO2, NH3, H2S, CH4) using the time series model of ARIMA, the learning algorithms of Random forest, and LSTM. We find that the gas emission data depends on the short-term memory and behaves like a random walk. As a result, we compare the RMSE, MAE, and MAPE as the measure of the prediction performance under the same conditions given to three models. We find that ARIMA forecasts the gas emissions more precisely than the other two learning-based methods. Besides, the ARIMA model is more suitable for the real-time forecasts of gas emissions because it is faster for modeling than the two learning algorithms.

지수평활법을 외생변수로 사용하는 자기회귀 신경망 모형 (Neural network AR model with ETS inputs)

  • 김민재;성병찬
    • 응용통계연구
    • /
    • 제37권3호
    • /
    • pp.297-309
    • /
    • 2024
  • 본 논문에서는 자기회귀 신경망 모형과 지수평활법을 결합(NNARX+ETS 모형)하고 그 성능을 평가한다. 제안된 결합 모형은 시계열 자료를 예측하기 위하여 NNARX 모형의 외생변수로서 ETS 모형의 구성 성분을 활용한다. 이 모형의 주요 아이디어는, 신경망 모형이 원시계열 자료의 과거 시차만을 고려하는 것을 한계를 넘어서서 전통적 시계열 예측 방법인 지수평활법에 의해서 추출된 정제된 시계열 구성 성분까지도 추가로 신경망 모형의 입력값으로 사용하는 것이다. 예측 성능 평가는 2가지 실제 시계열 자료를 사용하였으며 제안된 모형을 NNAR 모형 및 전통적 시계열 분석 방법인 ETS와 ARIMA 모형과 비교하였다.