• 제목/요약/키워드: ARIMA Analysis

검색결과 206건 처리시간 0.022초

Positive Guidance 기법을 응용한 실시간 교통안전 경고정보 제공방안 (A Methodology for Providing More Reliable Traffic Safety Warning Information based on Positive Guidance Techniques)

  • 김준형;오철;오주택
    • 대한교통학회지
    • /
    • 제27권2호
    • /
    • pp.207-214
    • /
    • 2009
  • 최근 각종 센서 및 통신기술의 발달은 과거에 비해 보다 미시적이고 폭넓은 교통자료의 수집과 운전자의 주행편의를 위한 다양한 방식의 정보제공을 실시간 환경에서 가능하도록 하였다. 본 연구에서는 Positive Guidance 기법을 응용하여 이와 같은 실시간 환경에서 적용 가능한 실시간 교통상충 분석 기반의 경고정보 제공 방안을 제안하고자 한다. 제안하는 시스템은 영상 이미지 추적 기법으로 개별차량의 주행패턴을 분석하여 인접 차량간 상충을 분석하고, ARIMA 모형을 이용하여 상충분석결과를 바탕으로 영상검지영역의 위험도를 예측한다. 위험도 예측을 통해 생성된 경고정보는 Positive Guidance 기법을 적용하여 영상검지영역 상류부에서 접근 중인 운전자에게 제공된다. 본 연구의 성과물은 향후 보다 교통사고 예방을 위한 보다 진보된 교통정보시스템의 개발 시 유용하게 활용될 것으로 기대된다.

개입모형을 이용한 한국의 입출국자 수의 분석 (Intervention Analysis of Korea Tourism Data)

  • 김수용;성병찬
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.735-743
    • /
    • 2011
  • 본 논문에서는 개입모형(intervention model)을 이용하여 한국의 입출국자 시계열 자료를 분석한다. 개입분석을 위하여 1997년 12월의 IMF 구제금융사건, 2003년의 3월의 SARS 발생, 그리고 2008년의 9월의 리먼브라더스 사태를 개입변수로 고려하였다. 그 결과, 한국의 총 입국자 수에는 SARS 개입변수만이 2003년 4월부터 영향을 미치기 시작하여 2003년 5월부터 급격하게 감소하는 영향을 미친 것으로 나타났다. 반면, 한국의 총 출국자 수에는 모든 3가지 개입의 효과가 유의하게 나타났으며 특히 IMF 개입변수는 1997년 12월부터 영구적인 영향을 미친 것으로 보이며 SARS 및 리먼브라더스 개입변수는 점차로 감소하는 영향을 미친 것으로 나타났다.

미세먼지 자료에서의 결측치 대체 방법 비교 (Comparision of Missing Imputaion Methods In fine dust data)

  • 김연진;박헌진
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.105-114
    • /
    • 2019
  • 자료 분석에 있어서 결측치 대체는 큰 이슈중 하나이다. 결측치의 발생을 무시하고 분석을 진행하게 되면, bias가 발생하여 그에 따른 추정치에 대해 잘못된 결과를 줄 수 있다. 이 논문에서는 미세먼지자료에서 발생한 결측치를 적절한 대체 방법을 찾아 적용하자 한다. 이를 통해 시계열 자료에서 발생한 결측치를 R을 기반으로 한MICE, MissForest 등의 기존 방법과 시계열 기반 모델을 사용하여 여러 가지 상황에 대한 시뮬레이션을 설정해 비교해 밝히고자 하였다. 이 결과에 대해 각각을 변수 별로 비교하였을때 ImputeTS 패키지를 이용한 auto arima 모델의 kalman filter를 적용한 모형과 MissForest 모형이 미세먼지자료 결측치 대체에서는 좋은 결과를 주는 것으로 판단되었다.

  • PDF

INNOVATION ALGORITHM IN ARMA PROCESS

  • Sreenivasan, M.;Sumathi, K.
    • Journal of applied mathematics & informatics
    • /
    • 제5권2호
    • /
    • pp.373-382
    • /
    • 1998
  • Most of the works in Time Series Analysis are based on the Auto Regressive Integrated Moving Average (ARIMA) models presented by Box and Jeckins(1976). If the data exhibits no ap-parent deviation from stationarity and if it has rapidly decreasing autocorrelation function then a suitable ARIMA(p,q) model is fit to the given data. Selection of the orders of p and q is one of the crucial steps in Time Series Analysis. Most of the methods to determine p and q are based on the autocorrelation function and partial autocor-relation function as suggested by Box and Jenkins (1976). many new techniques have emerged in the literature and it is found that most of them are over very little use in determining the orders of p and q when both of them are non-zero. The Durbin-Levinson algorithm and Innovation algorithm (Brockwell and Davis 1987) are used as recur-sive methods for computing best linear predictors in an ARMA(p,q)model. These algorithms are modified to yield an effective method for ARMA model identification so that the values of order p and q can be determined from them. The new method is developed and its validity and usefulness is illustrated by many theoretical examples. This method can also be applied to an real world data.

A Hybrid Correction Technique of Missing Load Data Based on Time Series Analysis

  • Lee, Chan-Joo;Park, Jong-Bae;Lee, Jae-Yong;Shin, Joong-Rin;Lee, Chang-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권4호
    • /
    • pp.254-261
    • /
    • 2004
  • Traditionally, electrical power systems had formed the vertically integrated industry structures based on the economics of scale. However, power systems have been recently reformed to increase their energy efficiency. According to these trends, the Korean power industry underwent partial reorganization and competition in the generation market was initiated in 2001. In competitive electric markets, accurate load data is one of the most important issues to maintaining flexibility in the electric markets as well as reliability in the power systems. In practice, the measuring load data can be uncertain because of mechanical trouble, communication jamming, and other issues. To obtain reliable load data, an efficient evaluation technique to adjust the missing load data is required. This paper analyzes the load pattern of historical real data and then the tuned ARIMA (Autoregressive Integrated Moving Average), PCHIP (Piecewise Cubic Interpolation) and Branch & Bound method are applied to seek the missing parameters. The proposed method is tested under a variety of conditions and also tested against historical measured data from the Korea Energy Management Corporation (KEMCO).

Development of a Model to Predict the Volatility of Housing Prices Using Artificial Intelligence

  • Jeonghyun LEE;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.75-87
    • /
    • 2023
  • We designed to employ an Artificial Intelligence learning model to predict real estate prices and determine the reasons behind their changes, with the goal of using the results as a guide for policy. Numerous studies have already been conducted in an effort to develop a real estate price prediction model. The price prediction power of conventional time series analysis techniques (such as the widely-used ARIMA and VAR models for univariate time series analysis) and the more recently-discussed LSTM techniques is compared and analyzed in this study in order to forecast real estate prices. There is currently a period of rising volatility in the real estate market as a result of both internal and external factors. Predicting the movement of real estate values during times of heightened volatility is more challenging than it is during times of persistent general trends. According to the real estate market cycle, this study focuses on the three times of extreme volatility. It was established that the LSTM, VAR, and ARIMA models have strong predictive capacity by successfully forecasting the trading price index during a period of unusually high volatility. We explores potential synergies between the hybrid artificial intelligence learning model and the conventional statistical prediction model.

외재적 변수를 이용한 딥러닝 예측 기반의 도시가스 인수량 예측 (Deep Learning Forecast model for City-Gas Acceptance Using Extranoues variable)

  • 김지현;김지은;박상준;박운학
    • 한국가스학회지
    • /
    • 제23권5호
    • /
    • pp.52-58
    • /
    • 2019
  • 본 연구에서는 국내 도시가스 인수량에 대한 예측 모델을 개발하였다. 국내의 도시가스 회사는 KOGAS에 차년도 수요를 예측하여 보고해야 하므로 도시가스 인수량 예측은 도시가스 회사에 중요한 사안이다. 도시가스 사용량에 영향을 미치는 요인은 용도구분에 따라 다소 상이하나, 인수량 데이터는 용도별 구분이 어렵기 때문에 특정 용도에 관계없이 영향을 주는 요인으로 외기온도를 고려하여 모델개발을 실시하였다.실험 및 검증은 JB주식회사의 2008년부터 2018년까지 총 11년 치 도시가스 인수량 데이터를 사용하였으며, 전통적인 시계열 분석 중 하나인 ARIMA(Auto-Regressive Integrated Moving Average)와 딥러닝 기법인 LSTM(Long Short-Term Memory)을 이용하여 각각 예측 모델을 구축하고 두 방법의 단점을 최소화하기 위하여 다양한 앙상블(Ensemble) 기법을 사용하였다. 본 연구에서 제안한 일별 예측의 오차율 절댓값 평균은 Ensemble LSTM 기준 0.48%, 월별 예측의 오차율 절댓값 평균은 2.46%, 1년 예측의 오차율 절댓값 평균은 5.24%임을 확인하였다.

시계열 분석 기반 신뢰구간 추정을 활용한 항만 물동량 이상감지 방안 (Port Volume Anomaly Detection Using Confidence Interval Estimation Based on Time Series Analysis)

  • 하준수;나준호;조광휘;하헌구
    • 한국항만경제학회지
    • /
    • 제37권1호
    • /
    • pp.179-196
    • /
    • 2021
  • 부산항의 부두 장치율은 지난 3년동안 지속적으로 상승하였다. 부두 장치율 상승은 컨테이너 재조작을 야기하여 부두 노동자의 업무 강도를 증가시킨다. 또한, 장치율 상승이 장기화될 경우 선주의 대기시간을 증가시켜 항만의 서비스 수준이 하락할 수 있다. 이에 본 연구는 부두 장치율 상승 문제를 해결하기 위한 방안으로 수요예측치의 신뢰구간 추정을 활용한 항만 물동량 이상감지 방안을 제안하였다. 수요예측 방법론은 ARIMA 모형을 사용하였으며 실증 분석을 위해 사용된 자료는 2013년 1월 1일부터 2020년 10월 12일까지 총 2841일 동안의 부산항 전체 일별 물동량 자료 및 9개 부두의 일별 물동량 자료이다. 기존에 항만 물동량을 예측하는 대부분의 연구는 주로 장기 예측에 초점을 맞추었다. 일별, 부두별 부산항 물동량 자료를 활용하여 단기 물동량을 예측하고 예측치를 기반으로 부두 장치율 관리 방안을 제시한 본 연구는 충분한 가치가 있다고 판단된다.

동적요인모형에 기반한 한국의 GDP 성장률 예측 (Forecasting Korea's GDP growth rate based on the dynamic factor model)

  • 이경서;임예지
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.255-263
    • /
    • 2024
  • GDP는 한 나라의 가계, 기업, 정부 등 모든 경제 주체가 일정 기간 동안 창출한 재화와 서비스의 시장 가치의 합을 나타낸다. GDP를 통하여 국가의 경제 규모를 파악할 수 있으며, 정부의 정책 방향에 영향을 미치는 대표적인 경제 지표이므로 이에 대한 연구가 다양하게 이루어지고 있다. 본 논문에서는 G20 국가들의 주요 거시경제 지표를 활용하여 dynamic factor model 기반의 GDP 성장률 예측 모델을 제시하였다. 추출된 factor를 다양한 회귀분석 방법론과 결합하여 그 결과들을 비교하였으며, 기존의 전통적인 시계열 예측방법인 ARIMA 모델, common component를 이용한 예측 등도 함께 비교하였다. COVID 이후 지표의 변동성이 큰 점을 고려하여 예측 시기를 COVID 전후로 나누었으며, 그 결과 factor에 대해 ridge regression과 lasso regression을 적용하여 예측한 경우 가장 좋은 성능을 나타내었다.

수소 메이저 홀드오버 시간예측을 위한 머신러닝 모델 개발 (Development of Machine Learning Model to Predict Hydrogen Maser Holdover Time)

  • 김상준;이영규;이준효;이주현;최경원;오주익;유동희
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.111-115
    • /
    • 2024
  • This study builds a machine learning model optimized for clocks among various techniques in the field of artificial intelligence and applies it to clock stabilization or synchronization technology based on atomic clock noise characteristics. In addition, the possibility of providing stable source clock data is confirmed through the characteristics of machine learning predicted values during holdover of atomic clocks. The proposed machine learning model is evaluated by comparing its performance with the AutoRegressive Integrated Moving Average (ARIMA) model, an existing statistical clock prediction model. From the results of the analysis, the prediction model proposed in this study (MSE: 9.47476) has a lower MSE value than the ARIMA model (MSE: 221.2622), which means that it provides more accurate predictions. The prediction accuracy is based on understanding the complex nature of data that changes over time and how well the model reflects this. The application of a machine learning prediction model can be seen as a way to overcome the limitations of the statistical-based ARIMA model in time series prediction and achieve improved prediction performance.