• 제목/요약/키워드: ARIMA Analysis

검색결과 206건 처리시간 0.025초

X-13ARIMA-SEATS로의 전환을 위한 계절조정결과 비교 (A Comparison Study of Seasonal Adjusted Series using the X-13ARIMA-SEATS)

  • 이긍희;이혜영
    • 응용통계연구
    • /
    • 제27권1호
    • /
    • pp.133-146
    • /
    • 2014
  • 2012년중 미국 상무부 센서스국에서 X-12-ARIMA와 TRAMO-SEATS를 동시에 이용할 수 있는 계절조정 프로그램인 X-13ARIMA-SEATS을 공개하였다. 미국을 포함한 각국통계작성기관은 X-12-ARIMA에서 X-13ARIMA-SEATS로 계절조정방법을 전환하여 계절조정통계를 작성해가고 있다. 따라서 우리나라에서도 X-12-ARIMA로부터 X-13ARIMA-SEATS로 계절조정방법을 전환하는 방안을 마련할 필요가 있다. 이 논문에서는 국민소득, 국제수지, 통화통계에 대해 X-13ARIMA-SEATS 프로그램을 통해 계절조정통계를 필터를 달리하여 작성한 후 이를 X-12-ARIMA에 의한 계절조정통계와 비교하였다. 비교 결과 X11필터를 적용한 X-13ARIMA-SEATS에 의한 계절조정은 X-12-ARIMA에 의한 계절조정과 차이가 작게 나타나 X-12-ARIMA로부터 X-13ARIMA-SEATS로의 빠른 전환이 가능할 것으로 판단된다.

ARIMA AR(1) 모형을 이용한 소프트웨어 미래 고장 시간 예측에 관한 연구 (The Study for Software Future Forecasting Failure Time Using ARIMA AR(1))

  • 김희철;신현철
    • 융합보안논문지
    • /
    • 제8권2호
    • /
    • pp.35-40
    • /
    • 2008
  • 소트프웨어 고장 시간은 테스팅 시간과 관계없이 일정하거나, 단조 증가 혹은 단조 감소 추세를 가지고 있다. 이러한 소프트웨어 신뢰모형들을 분석하기 위한 자료척도로 자료에 대한 추세 검정이 개발되어 있다. 추세 분석에는 산술평균 검정과 라플라스 추세 검정 등이 있다. 추세분석들은 전체적인 자료의 개요의 정보만 제공한다. 본 논문에서는 고장시간을 측정하다가 시간절단이 될 경우에 미래의 고장 시간 예측에 관하여 연구되었다. 고장 시간 예측에 사용된 고장시간자료는 소프트웨어 고장 시간 분포에 널리 사용되는 와이블 분포에서 형상모수가 1이고 척도모수가 0.5를 가진 난수를 발생된 모의 자료를 이용 하였다. 이 자료를 이용하여 시계열 분석에 이용되는 ARIMA 모형 중에서 AR(1) 모형과 모의실험을 통한 예측 방법을 제안하였다. 이 방법에서 ARIMA 모형을 이용한 예측방법이 효율적임을 입증 하였다.

  • PDF

계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘 (Automatic order selection procedure for count time series models)

  • 지윤미;성병찬
    • 응용통계연구
    • /
    • 제33권2호
    • /
    • pp.147-160
    • /
    • 2020
  • 본 논문은 시계열 일반화 선형 모형의 하나인 계수형 시계열 모형에서 중요한 역할을 하는 과거 관측값과 조건부 평균값의 차수를 자동으로 결정하는 알고리즘을 연구한다. 본 알고리즘은 ARIMA 모형의 차수를 기반으로 시계열 일반화 선형 모형의 차수 후보군을 만들고, 차수 후보군의 조합을 이용하여 정보량 기준으로 최종 모형으로 선택한다. 제안된 알고리즘을 평가하기 위하여, 내재적 모형 및 내재적 시계열의 종류에 따른 시뮬레이션 및 실증 분석을 수행하고 예측력을 ARIMA 모형과 비교한다. 예측 성능 평가 결과, 계수형 시계열 분석에서 ARIMA 모형에 비해 시계열 일반화 선형 모형의 예측 성능이 우수함을 확인할 수 있다. 또한 실증분석으로서, 살인사건 발생 건수의 예측결과 ARIMA 모형보다 중기 및 장기 예측에서 우수한 성능을 나타내는 것을 확인할 수 있다.

ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측 (Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

시계열 모델 기반의 계절성에 특화된 S-ARIMA 모델을 사용한 리튬이온 배터리의 노화 예측 및 분석 (Degradation Prediction and Analysis of Lithium-ion Battery using the S-ARIMA Model with Seasonality based on Time Series Models)

  • 김승우;이평연;권상욱;김종훈
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.316-324
    • /
    • 2022
  • This paper uses seasonal auto-regressive integrated moving average (S-ARIMA), which is efficient in seasonality between time-series models, to predict the degradation tendency for lithium-ion batteries and study a method for improving the predictive performance. The proposed method analyzes the degradation tendency and extracted factors through an electrical characteristic experiment of lithium-ion batteries, and verifies whether time-series data are suitable for the S-ARIMA model through several statistical analysis techniques. Finally, prediction of battery aging is performed through S-ARIMA, and performance of the model is verified through error comparison of predictions through mean absolute error.

ARIM모형을 활용한 모듈러 건축시장 현황 조사 (Survey on the Market of Modular Building Using ARIMA Model)

  • 박남천;김균태;이유리
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.14-15
    • /
    • 2014
  • The modular construction is as yet early stage of market in Korea. So It is have difficulty of market demand forecast of the modular building. Therefore, this study was done analysis for market trends of the modular building using ARIMA(Auto Regressive Integrated Moving Average) model by time series data.

  • PDF

소셜데이터 및 ARIMA 분석을 활용한 소비자 관점의 헬스케어 기술수요 예측 연구 (A Study on the Demand Forecasting of Healthcare Technology from a Consumer Perspective : Using Social Data and ARIMA Model Approach)

  • 양동원;이준기
    • 한국IT서비스학회지
    • /
    • 제19권4호
    • /
    • pp.49-61
    • /
    • 2020
  • Prior studies on technology predictions attempted to predict the emergence and spread of emerging technologies through the analysis of correlations and changes between data using objective data such as patents and research papers. Most of the previous studies predicted future technologies only from the viewpoint of technology development. Therefore, this study intends to conduct technical forecasting from the perspective of the consumer by using keyword search frequency of search portals such as NAVER before and after the introduction of emerging technologies. In this study, we analyzed healthcare technologies into three types : measurement technology, platform technology, and remote service technology. And for the keyword analysis on the healthcare, we converted the classification of technology perspective into the keyword classification of consumer perspective. (Blood pressure and blood sugar, healthcare diagnosis, appointment and prescription, and remote diagnosis and prescription) Naver Trend is used to analyze keyword trends from a consumer perspective. We also used the ARIMA model as a technology prediction model. Analyzing the search frequency (Naver trend) over 44 months, the final ARIMA models that can predict three types of healthcare technology keyword trends were estimated as "ARIMA (1,2,1) (1,0,0)", "ARIMA (0,1,0) (1,0,0)", "ARIMA (1,1,0) (0,0,0)". In addition, it was confirmed that the values predicted by the time series prediction model and the actual values for 44 months were moving in almost similar patterns in all intervals. Therefore, we can confirm that this time series prediction model for healthcare technology is very suitable.

한국 멸치어업의 어획량 분석과 예측 ARIMA 모델 및 스펙트럼 해석 (Analysis and Prediction of Anchovy Fisheries in Korea ARIMA Model and Spectrum Analysis)

  • 박해훈;윤갑동
    • 한국수산과학회지
    • /
    • 제29권2호
    • /
    • pp.143-149
    • /
    • 1996
  • 우리나라 멸치어업에서의 1971~1992년 동안의 22년간 월별 어획량 자료를 시계열 분석하여 어획량을 분석, 예측하였다. 시계열 분석은 다른 생물학적, 해양학적, 사회 경제적인 요소가 없어도 단지 어획량 자료만으로 분석과 예측이 가능하다. 첫 20년간인 1971~1990년 사이의 월별 멸치 어획량 자료를 ARIMA 시계열 모형에 적용시켜 구한 결과는 다음과 같다. 로그 (대수) 변환시켰을 때의 ARIMA 모형: $$(1-0.381B)(1-0.027B^{12}+0.141B^{24})(1-B^1)(1-B^{12})Z_t=(1-0.968B)(1-0.727B^{12})e_t$$, Box-Cox 변환시켰을 때의 ARIMA 모형: $$(1-0.431B)(1-B^{12})Z_t=(1-0.882B^{12})e_t$$, 위의 두 모형중 Box-Cox 변환시킨 것이 로그 (대수) 변환시킨 것보다 예측오차가 적었으며, Box-Cox 변환식은 $Y'=(Y^{0.58}-1)/0.58$ 이었다. 위의 두 모형 중 후자의 모형을 이용하여 1991~1992년 사이의 월별 어획량을 예측하였다. 예측 어획량과 실제 어획량과의 월별 오차범위는 1.0~63.2% (1991년에 1.6~63.2%이고, 1992년에는 1.0~60.4%)였다. 예측 어획량이 각 연도별로 148,201M/T과 148,834M/T인데 비해, 실제 어획량은 170,293M/T, 168,234M/T이었다. 2년 동안의 총어획량에 대한 오차는 12.3%였다. 또한 스펙트럼 분석은 순환변동의 주기가 2.2개월, 6.1개월, 10.2개월, 12개월, 14.7개월에서 상대적으로 큰 성분이 있음을 나타내었다 이 순환변동 성분은 적절한 ARIMA 모형을 결정하는 데도 도움이 된다.

  • PDF

하이브리드 ARIMA-신경망 모델을 통한 컨테이너물동량 예측에 관한 연구 (A study on the forecast of port traffic using hybrid ARIMA-neural network model)

  • 신창훈;강정식;박수남;이지훈
    • 한국항해항만학회지
    • /
    • 제32권1호
    • /
    • pp.81-88
    • /
    • 2008
  • 컨테이너항만의 물동량 예측은 항만의 개발 및 운영계획을 위해 매우 중요한 과정이다. 일반적으로 회귀분석, ARIMA모형 등의 통계적 방법론을 통해 많은 예측이 이뤄져왔다. 최근의 연구에서는 인공 신경망(ANN)기법을 통한 예측이 이뤄지고 있으며 기존의 선형적인 기법을 대신하고 있다. 본 연구에서는 선형모형과 비선형모형에 강점이 있는 ARIMA모형과 신경망모형을 결합해 보다 효과적인 예측 모형을 개발하고자 한다. 실제 항만의 과거 자료를 통해 모델의 적합성을 측정하였고 항만의 특성에 따라 모형의 적합성이 다양하게 나타났다.

하이브리드 ARIMA-신경망 모델을 통한 항만물동량 예측에 관한 연구 (A study on the forecast of container traffic using hybrid ARIMA-neural network model)

  • 신창훈;강정식;박수남;이지훈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2007년도 추계학술대회 및 제23회 정기총회
    • /
    • pp.259-260
    • /
    • 2007
  • 컨테이너항만의 물동량 예측은 항만의 계발 및 운영계획을 위해 매우 중요한 과정이다. 일반적으로 회귀분석, ARIMA 등의 통계적 방법론을 통해 많은 예측이 이뤄져왔다. 최근의 연구에서는 인공 신경망(ANN)기법을 통한 예측이 이뤄지고 있으며 기존의 선형적인 기법을 대신하고 있다. 본 연구에서는 선형모델과 비선형모델에 강점이 있는 ARIMA와 신경망 모델을 결합해 보다 효과적인 예측 모델을 개발하고자 한다. 실제 항만의 과거 자료를 통해 모델의 적합성을 측정하였고 항만의 특성에 따라 모형의 적합성이 다양하게 나타났다.

  • PDF