• Title/Summary/Keyword: ARIMA모형

Search Result 272, Processing Time 0.02 seconds

Predicting ozone warning days based on an optimal time series model (최적 시계열 모형에 기초한 오존주의보 날짜 예측)

  • Park, Cheol-Yong;Kim, Hyun-Il
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.293-299
    • /
    • 2009
  • In this article, we consider linear models such as regression, ARIMA (autoregressive integrated moving average), and regression+ARIMA (regression with ARIMA errors) for predicting hourly ozone concentration level in two areas of Daegu. Based on RASE(root average squared error), it is shown that the ARIMA is the best model in one area and that the regression+ARIMA model is the best in the other area. We further analyze the residuals from the optimal models, so that we might predict the ozone warning days where at least one of the hourly ozone concentration levels is over 120 ppb. Based on the training data in the years from 2000 to 2003, it is found that 35 ppb is a good cutoff value of residulas for predicting the ozone warning days. In on area of Daegu, our method predicts correctly one of two ozone warning days of 2004 as well as all of the remaining 364 non-warning days. In the other area, our methods predicts correctly all of one ozone warning days and 365 non-warning days of 2004.

  • PDF

The Forecasting of Monthly Runoff using Stocastic Simulation Technique (추계학적 모의발생기법을 이용한 월 유출 예측)

  • An, Sang-Jin;Lee, Jae-Gyeong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.159-167
    • /
    • 2000
  • The purpose of this study is to estimate the stochastic monthly runoff model for the Kunwi south station of Wi-stream basin in Nakdong river system. This model was based on the theory of Box-Jenkins multiplicative ARlMA and the state-space model to simulate changes of monthly runoff. The forecasting monthly runoff from the pair of estimated effective rainfall and observed value of runoff in the uniform interval was given less standard error then the analysis only by runoff, so this study was more rational forecasting by the use of effective rainfall and runoff. This paper analyzed the records of monthly runoff and effective rainfall, and applied the multiplicative ARlMA model and state-space model. For the P value of V AR(P) model to establish state-space theory, it used Ale value by lag time and VARMA model were established that it was findings to the constituent unit of state-space model using canonical correction coefficients. Therefore this paper confirms that state space model is very significant related with optimization factors of VARMA model.

  • PDF

Application to Evaluation of Hydrologic Time Series Forecasting for Long-Term Runoff Simulation (장기유출모의를 위한 수문시계열 예측모형의 적용성 평가)

  • Yoon, Sun-Kwon;Ahn, Jae-Hyun;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.809-824
    • /
    • 2009
  • Hydrological system forecasting, which is the short term runoff historical data during the limited period in dam site, is a conditional precedent of hydrological persistence by stochastic analysis. We have forecasted the monthly hydrological system from Andong dam basin data that is the rainfall, evaporation, and runoff, using the seasonal ARIMA (autoregressive integrated moving average) model. Also we have conducted long term runoff simulations through the forecasted results of TANK model and ARIMA+TANK model. The results of analysis have been concurred to the observation data, and it has been considered for application to possibility on the stochastic model for dam inflow forecasting. Thus, the method presented in this study suggests a help to water resource mid- and long-term strategy establishment to application for runoff simulations through the forecasting variables of hydrological time series on the relatively short holding runoff data in an object basins.

Comparison of the BOD Forecasting Ability of the ARIMA model and the Artificial Neural Network Model (ARIMA 모형과 인공신경망모형의 BOD예측력 비교)

  • 정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, the water quality forecast was performed on the BOD of the Chungju Dam using the ARIMA model, which is a nonlinear statistics model, and the artificial neural network model. The monthly data of water quality were collected from 1991 to 2000. The most appropriate ARIMA model for Chungju dam was found to be the multiplicative seasonal ARIMA(1,0,1)(1,0,1)$_{12}$, model. While the artificial neural network model, which is used relatively often in recent days, forecasts new data by the strength of a learned matrix like human neurons. The BOD values were forecasted using the back-propagation algorithm of multi-layer perceptrons in this paper. Artificial neural network model was com- posed of two hidden layers and the node number of each hidden layer was designed fifteen. It was demonstrated that the ARIMA model was more appropriate in terms of changes around the overall average, but the artificial neural net-work model was more appropriate in terms of reflecting the minimum and the maximum values.s.

Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes (항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로)

  • SUH, Bo Hyoun;YANG, Tae Woong;HA, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.

Comparison of time series predictions for maximum electric power demand (최대 전력수요 예측을 위한 시계열모형 비교)

  • Kwon, Sukhui;Kim, Jaehoon;Sohn, SeokMan;Lee, SungDuck
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.623-632
    • /
    • 2021
  • Through this study, we studied how to consider environment variables (such as temperatures, weekend, holiday) closely related to electricity demand, and how to consider the characteristics of Korea electricity demand. In order to conduct this study, Smoothing method, Seasonal ARIMA model and regression model with AR-GARCH errors are compared with mean absolute error criteria. The performance comparison results of the model showed that the predictive method using AR-GARCH error regression model with environment variables had the best predictive power.

Analysis and Prediction of Anchovy Fisheries in Korea ARIMA Model and Spectrum Analysis (한국 멸치어업의 어획량 분석과 예측 ARIMA 모델 및 스펙트럼 해석)

  • PARK Hae-Hoon;YOON Gab-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.143-149
    • /
    • 1996
  • Forecasts of the monthly catches of anchovy in Korea were carried out by the seasonal Autoregressive Integrated Moving Average (ARIMA) model and spectral analysis. The seasonal ARIMA model is as follows: $$(1-0.431B)(1-B^{12})Z_t=(1-0.882B^{12})e_t$$ where: $Z_t=value$ at month $t;\;B^{p}$ is a backward shift operator, that is, $B^pZ_t=Z_{t-p};$ and $e_t=error$ term at month t, which is to forecast 24 months ahead the anchovy catches in Korea. The prediction error by the Box-Cox transformation on monthly anchovy catches in Korea was less than that by the logarithmic transformation. The equation of the Box-Cox transformation was $Y'=(Y^{0.58}-1)/0.58$. Forecasts of the monthly anchovy catches for $1991\~1992$, which were compared with the actual catches, had an absolute percentage error (APE) range of $1.0\~63.2\%$. Total observed annual catches in 1991 and 1992 were 170,293 M/T and 168,234 M/T respectively, while the predicted catches were 148,201 M/T and 148,834 M/T $(API\;13.0\%\;and\;11.5\%,\;respectively)$. The spectrum analysis of the monthly catches of anchovy showed some dominant fluctuations in the periods of 2.2, 6.1, 10.2 12.0 and 14.7 months. The spectrum analysis was also useful for selecting the ARIMA model.

  • PDF

Study on the Forecasting and Relationship of Busan Cargo by ARIMA and VAR·VEC (ARIMA와 VAR·VEC 모형에 의한 부산항 물동량 예측과 관련성연구)

  • Lee, Sung-Yhun;Ahn, Ki-Myung
    • Journal of Navigation and Port Research
    • /
    • v.44 no.1
    • /
    • pp.44-52
    • /
    • 2020
  • More accurate forecasting of port cargo in the global long-term recession is critical for the implementation of port policy. In this study, the Busan Port container volume (export cargo and transshipment cargo) was estimated using the Vector Autoregressive (VAR) model and the vector error correction (VEC) model considering the causal relationship between the economic scale (GDP) of Korea, China, and the U.S. as well as ARIMA, a single volume model. The measurement data was the monthly volume of container shipments at the Busan port J anuary 2014-August 2019. According to the analysis, the time series of import and export volume was estimated by VAR because it was relatively stable, and transshipment cargo was non-stationary, but it has cointegration relationship (long-term equilibrium) with economic scale, interest rate, and economic fluctuation, so estimated by the VEC model. The estimation results show that ARIMA is superior in the stationary time-series data (local cargo) and transshipment cargo with a trend are more predictable in estimating by the multivariate model, the VEC model. Import-export cargo, in particular, is closely related to the size of our country's economy, and transshipment cargo is closely related to the size of the Chinese and American economies. It also suggests a strategy to increase transshipment cargo as the size of China's economy appears to be closer than that of the U.S.

Performance comparison for automatic forecasting functions in R (R에서 자동화 예측 함수에 대한 성능 비교)

  • Oh, Jiu;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.645-655
    • /
    • 2022
  • In this paper, we investigate automatic functions for time series forecasting in R system and compare their performances. For the exponential smoothing models and ARIMA (autoregressive integrated moving average) models, we focus on the representative time series forecasting functions in R: forecast::ets(), forecast::auto.arima(), smooth::es() and smooth::auto.ssarima(). In order to compare their forecast performances, we use M3-Competiti on data consisting of 3,003 time series and adopt 3 accuracy measures. It is confirmed that each of the four automatic forecasting functions has strengths and weaknesses in the flexibility and convenience for time series modeling, forecasting accuracy, and execution time.

KTX Passenger Demand Forecast with Intervention ARIMA Model (개입 ARIMA 모형을 이용한 KTX 수요예측)

  • Kim, Kwan-Hyung;Kim, Han-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.470-476
    • /
    • 2011
  • This study proposed the intervention ARIMA model as a way to forecast the KTX passenger demand. The second phase of the Gyeongbu high-speed rail project and the financial crisis in 2008 were analyzed in order to determine the effect of time series on the opening of a new line and economic impact. As a result, the financial crisis showed that there is no statistically significant impact, but the second phase of the Gyeongbu high-speed rail project showed that the weekday trips increased about 17,000 trips/day and the weekend trips increased about 26,000 trips/day. This study is meaningful in that the intervention explained the phenomena affecting the time series of KTX trip and analyzed the impact on intervention of time series quantitatively. The developed model can be used to forecast the outline of the overall KTX demand and to validate the KTX O/D forecasting demand.