• Title/Summary/Keyword: AR(augmented reality)

Search Result 724, Processing Time 0.027 seconds

Real-Time Individual Tracking of Multiple Moving Objects for Projection based Augmented Visualization (다중 동적객체의 실시간 독립추적을 통한 프로젝션 증강가시화)

  • Lee, June-Hyung;Kim, Ki-Hong
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.357-364
    • /
    • 2014
  • AR contents, if markers to be tracked move fast, show flickering while updating images captured from cameras. Conventional methods employing image based markers and SLAM algorithms for tracking objects have the problem that they do not allow more than 2 objects to be tracked simultaneously and interacted with each other in the same camera scene. In this paper, an improved SLAM type algorithm for tracking dynamic objects is proposed and investigated to solve the problem described above. To this end, method using 2 virtual cameras for one physical camera is adopted, which makes the tracked 2 objects interacted with each other. This becomes possible because 2 objects are perceived separately by single physical camera. Mobile robots used as dynamic objects are synchronized with virtual robots in the well-designed contents, proving usefulness of applying the result of individual tracking for multiple moving objects to augmented visualization of objects.

Investment Process of Start-up: A Case Study of LetinAR (스타트업의 초기 투자유치 프로세스: (주)레티널 사례를 바탕으로)

  • KIM, HA YOUNG;BAE, TAE JUN;WON, CHI WOON
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.6
    • /
    • pp.119-130
    • /
    • 2019
  • Although a well-established line of research has addressed the funding decision, the activities of investee startups to receive funding have been overlooked because prior research has been conduced from investor's point of view. In addition, funding does not result from one off decisions but from decision process with many stages. Moreover, the emphasis placed on specific investment criteria varies by different stages during the process. Therefore, understanding the initial funding of startups requires to analyze the strategic behaviors of startups throughout the entire funding decision process from first meeting with investors to funding success. This study investigates the initial funding process of startups, and the analysis is based on a case study of LetinAR one of the successful startups founded by students in South Korea. This study investigates how early start-ups were able to receive funding from startup's point of view, and the analysis is based on a case study of LetinAR, an augmented reality(AR) startup using Pin mirror technology. By adding "legitimacy building" stage that had not been addressed previously, we divided funding process into four stages: 1) legitimacy building, 2) familiarization, 3) screening, and 4) bargaining phase. We did not only analyze major criteria, but also strategic activities of startup at each stage. This study makes a contribution by helping us understand complicated process of funding and the successful strategic behavior of investor backed startups.

A Study on a Quantified Structure Simulation Technique for Product Design Based on Augmented Reality (제품 디자인을 위한 증강현실 기반 정량구조 시뮬레이션 기법에 대한 연구)

  • Lee, Woo-Hun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.85-94
    • /
    • 2005
  • Most of product designers use 3D CAD system as a inevitable design tool nowadays and many new products are developed through a concurrent engineering process. However, it is very difficult for novice designers to get the sense of reality from modeling objects shown in the computer screens. Such a intangibility problem comes from the lack of haptic interactions and contextual information about the real space because designers tend to do 3D modeling works only in a virtual space of 3D CAD system. To address this problem, this research investigate the possibility of a interactive quantified structure simulation for product design using AR(augmented reality) which can register a 3D CAD modeling object on the real space. We built a quantified structure simulation system based on AR and conducted a series of experiments to measure how accurately human perceive and adjust the size of virtual objects under varied experimental conditions in the AR environment. The experiment participants adjusted a virtual cube to a reference real cube within 1.3% relative error(5.3% relative StDev). The results gave the strong evidence that the participants can perceive the size of a virtual object very accurately. Furthermore, we found that it is easier to perceive the size of a virtual object in the condition of presenting plenty of real reference objects than few reference objects, and using LCD panel than HMD. We tried to apply the simulation system to identify preference characteristics for the appearance design of a home-service robot as a case study which explores the potential application of the system. There were significant variances in participants' preferred characteristics about robot appearance and that was supposed to come from the lack of typicality of robot image. Then, several characteristic groups were segmented by duster analysis. On the other hand, it was interesting finding that participants have significantly different preference characteristics between robot with arm and armless robot and there was a very strong correlation between the height of robot and arm length as a human body.

  • PDF

Development of BIM and Augmented Reality-Based Reinforcement Inspection System for Improving Quality Management Efficiency in Railway Infrastructure (철도 인프라 품질관리 효율성 향상을 위한 BIM 기반 AR 철근 점검 시스템 구축)

  • Suk, Chaehyun;Jeong, Yujeong;Jeon, Haein;Yu, Youngsu;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.63-65
    • /
    • 2023
  • BIM and AR technologies have been assessed as a means of enhancing productivity within the construction industry, through the provision of effortless access to critical data on site, achieved via the projection of 3D models and associated information onto actual structures. However, most of the previous researches for applying AR technology in construction quality management has been performed for construction projects in general, resulting in only overall on-site management solutions. Also, a few previous researches for the application of AR in the quality management of specific elements like reinforcements focused only on simple projection, so conducting specific quality inspection was impossible. Hence, this study aimed to develop a practically applicable BIM-based AR quality management system targeted for reinforcements. For the development of this system, the reinforcement inspection items on the quality checklist used at railway construction sites were analyzed, and four types of AR functions that can effectively address these items were developed and installed. The validation result of the system for the actual railway bridge showed a degradation of projection stability. This problem was solved through model simplification and enhancement of the AR device's hardware performance, and then the normal operation of the system was validated. Subsequently, the final developed reinforcement quality inspection system was evaluated for practical applicability by on-site quality experts, and the efficiency of inspection would significantly increase when using the AR system compared to the current inspection method for reinforcements.

Real-time Geometric Correction System for Digital Image Projection onto Deformable Surface (변형 가능한 곡면에서의 디지털 영상 투영을 위한 실시간 기하 보정 시스템)

  • Lee, Young-Bo;Han, Sang-Hun;Kim, Jung-Hoon;Lee, Dong-Hoon;Yun, Tae-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.39-44
    • /
    • 2008
  • This paper proposes a real-time geometric correction system based on a projector to project digital images onto deformable surface. Markers use to trace lots of corresponding points would spoil the projected image when the projector projects a digital image onto the surface because they leave marks on the surface. In addition, it is difficult to build a real-time geometric correction system since bottlenecks occur through the process of the geometric correction for projecting images. In this paper, we use invisible infrared markers and a vertex shader of GPU using Cg TookKit of NVIDIA in order to eliminate disadvantage and bottlenecks in the process of markers recognition so that it is possible to project natural correction images in real-time. As a result, this system overlays an interactive virtual texture onto the real paper by using the geometric transformation. Therefore, it is possible to develop variation of AR(Augmented Reality) based on digital contents systems.

  • PDF

ARtalet for Digilog Book Authoring Tool - Authoring 3D Objects Properties (디지로그 북 저작도구 ARtalet - 3 차원 객체 속성 저작)

  • Ha, Tae-Jin;Lee, Youg-Ho;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.314-318
    • /
    • 2008
  • This paper is about an authoring interface for augmented/mixed reality based book, specifically authoring 3D objects properties of Digilog book. We pursue even normal users with non-professional knowledge for programming can make the Digilog book easily. An authoring interface 3D object properties includes a manipulator as an input device and 3D contents authoring parts. As an interface design metaphor, existing GUI interface, already familiar to computer users, are referenced. The manipulator generates continuous/discrete input signal are necessary for authoring interface. Contents authoring part performs selection, positioning, scaling, coloring, copy of virtual objects using the input signal of the manipulator. Also users can exploit already existing GUI interface metaphor including pointing, click, drag and drop, and copy techniques with the manipulator. Therefore we think our AR authoring system can support rapid and intuitive modification of properties of virtual objects.

  • PDF

Fundamental study on the technology and application for the Next Generation Digital Textbook (차세대 디지털교과서를 위한 기반기술 및 적용에 관한 연구)

  • Sohn, Won-Sung;Han, Jae-Hyeop;Choy, Jin-Yong;Seo, Jong-Hoon;Choy, Yoon-Chul;Han, Tack-Don;Lim, Soon-Bum
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.2
    • /
    • pp.165-174
    • /
    • 2010
  • The digital textbook project which embarked by the Ministry of Education, Science and Technology has focused on experiments and practices from the school designated by the government. However the previous research about digital textbook provides static interaction models and teaching-learning models analogous to web-based learning based desktop PC even the framework of the digital textbook is based of Tablet PC. This paper provides learning and teaching models for next generation digital textbook which based digital inking techinques for sketcth interface and AR(augmented reality) interactions between teacher and learner. The proposed method of this paper is applied to educational contents and we found positive effect which is supported by statistical experiments. The results of this study in the future and the future development of digital textbooks in effect will be an effective development plan.

  • PDF

CEM Contextual Data Creation and Extraction Technology based on OOK of Augmented Reality (증강현실에서 OOK 기반의 CEM 맥락 데이터 생성 및 추출 기술)

  • Lee, Hye-Mi;Ryu, Nam-Hoon;Kim, Eung-Kon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.20-30
    • /
    • 2012
  • The biggest advantage of AR is that it allows unique experience in the real world through a virtual object. However, there is a limit in the marker techniques to do registration for the virtual object. Therefore, it is possible for a complication that only allows restrictive interaction to come up. This paper provides marker technique of the next generation which can supplement limitations of existing marker technique. Such marker is a combination of IR LED's, and is a convergence of LED VCL concepts of M2M. Environment where the user belongs to and their unique choice will be expressed into one context. Also, the context will be delivered to the system through OOK IR LED marker algorithm. Marker can be operated on the spot to change virtual objects according to the user's taste, registration can be done at the same time for several virtual objects, and control become possible.

Application of Augmented Reality to Steel Column Inspection (강기둥 시공검측을 위한 증강현실의 적용)

  • Shin, Do-Hyoung;Song, Yong-Hak
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.55-60
    • /
    • 2008
  • Inspection of steel columns which is one of the most critical elements in construction requires trained surveyor(s). Also it takes time to handle survey device(s) delicately for accurate measurements. To improve the inspection process of steel columns, the previous studies developed the AR prototype system, ARCam, and showed that ARCam is a promising inspection device that can reduce inspection time. However, ARCam still requires a surveyor to make measurements based on his visual perception and judgment This study proposes an algorithm for automatic inspection based on ARCam. The algorithm is based on image processing and computer vision and focuses on the inspection of steel column plumbness. This method will make measurements without a surveyor's judgment. The ultimate purpose of the automatic inspection is to minimize the surveying labor, thus reducing inspection time and cost.

  • PDF

Sampling-based Control of SAR System Mounted on A Simple Manipulator (간단한 기구부와 결합한 공간증강현실 시스템의 샘플 기반 제어 방법)

  • Lee, Ahyun;Lee, Joo-Ho;Lee, Joo-Haeng
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.356-367
    • /
    • 2014
  • A robotic sapatial augmented reality (RSAR) system, which combines robotic components with projector-based AR technique, is unique in its ability to expand the user interaction area by dynamically changing the position and orientation of a projector-camera unit (PCU). For a moving PCU mounted on a conventional robotic device, we can compute its extrinsic parameters using a robot kinematics method assuming a link and joint geometry is available. In a RSAR system based on user-created robot (UCR), however, it is difficult to calibrate or measure the geometric configuration, which limits to apply a conventional kinematics method. In this paper, we propose a data-driven kinematics control method for a UCR-based RSAR system. The proposed method utilized a pre-sampled data set of camera calibration acquired at sufficient instances of kinematics configurations in fixed joint domains. Then, the sampled set is compactly represented as a set of B-spline surfaces. The proposed method have merits in two folds. First, it does not require any kinematics model such as a link length or joint orientation. Secondly, the computation is simple since it just evaluates a several polynomials rather than relying on Jacobian computation. We describe the proposed method and demonstrates the results for an experimental RSAR system with a PCU on a simple pan-tilt arm.