• Title/Summary/Keyword: AQUACULTURE

Search Result 4,211, Processing Time 0.028 seconds

An Economic Effect of the selective breeding program on the Oliver flounder Aquaculture (넙치양식 선발육종사업의 경제효과)

  • Hwang, Jin-Wook;Myeong, Jeong-In
    • The Journal of Fisheries Business Administration
    • /
    • v.41 no.1
    • /
    • pp.113-128
    • /
    • 2010
  • This study is aimed to analyze the economic feasibility of the selective breeding program on the Oliver flounder aquaculture. First of all, in order to evaluate this program, we review the concept and research trend on the selective breeding. The objective of this research is the selective breeding program on the Oliver flounder aquaculture in the Genetics and Breeding Research Center, NFRDI. It was conducted to investigated economic effects of three factors of the selective breeding program on the Oliver flounder aquaculture such as fast growth, disease resistance and increase exports. The results of economic analysis of the selective breeding program on the Oliver flounder aquaculture are as follows; First, there were the significant meaning of the economic effects on the technology of the selective breeding program by fast growth, disease resistance and increase exports. Second, we analyzed in the economic feasibility of the selective breeding program on the Oliver flounder aquaculture from 2004 to 2020, internal rate of return(IRR) was 419%, a benefit-cost ratio was shown to be 24.92, net present value(NPV) was 989,942,464 thousand won, which indicates the economic feasibility of the selective breeding program is very high. Finally, in order to improve the economic feasibility, there is need to be focused on the efficient the selective breeding program on the Oliver flounder aquaculture.

A Study of Nitrification Kinetics in the Biofilter Process for Aquaculture Water Treatment: A Review (양식 수처리를 위한 생물막 공정에서 질산화 영향인자에 대한 고찰)

  • Park, Noh Back;Park, Mi Seon;Lee, Jin Hwan;Myeong, Jeong In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.675-681
    • /
    • 2013
  • There have been many studies on biofilter process regarding satisfactory water quality and the operational conditions of Recirculating Aquaculture Systems (RAS). For effective nitrification processes, it is necessary to dynamically identify and apply nitrifying microorganisms. Physical, chemical and biological processes concerning biofilms can be applied and influential factors including substrate, dissolved oxygen concentrations, organic matter, temperature, pH, alkalinity, salinity and mixing velocity intensity need to be considered. Also, designing and managing the process based on the dynamic interpretation of these factors are prerequisites for engineering applications of the biofilter process. This paper draws on current literature on the kinetics of nitrification of biofilms in the biofilter process. Influential factors for nitrification are crucial during the biofilter process and are expected to be critical in informing the design and operation of recirculating aquaculture systems.

A Study of Marine Aquaculture Management Strategies Using Remotely-sensed Satellite Data - A Case Study on Hallyeo Marine National Park and Tasmania - (위성영상을 이용한 해상 양식장 관리방안 연구 - 한려해상 국립공원과 호주 태즈매니아 지역을 사례로 -)

  • Park, Kyeong;Chang, Eunmi
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.5
    • /
    • pp.231-241
    • /
    • 2004
  • This study aims to detect the change of marine aquaculture farm within the boundary of Hallyeo Marine National Park. Comparison has been made on the Landsat images taken in 1984 and 2002 respectively by using feature extraction methods and other image analysis techniques. During the 18 year period between 1984 and 2002, total area of the aquaculture farms has been decreased in 63 percent. The reason for the change seems to be that aquaculture farms became concentrated only around the Geoje Islands due to the growth of the labor- and capital-intensive cage aquaculture for the expensive fish species instead of traditional oyster farming. Authors suggest the monitoring using remotely-sensed data as the best tool for the management of marine aquaculture farms on the basis of accuracy of analysis and relatively cheap cost. Management strategies of salmon farms in Tasmania, Australia has been analyzed to find the field techniques necessary for the management of aquaculture.

Effect of Artificial Noise from Offshore Wind Power Generation on Immunological Parameters in Rock Bream (Oplegnathus fasciatus) (돌돔(Oplegnathus fasciatus)에 대한 인위적인 해상풍력발전소 건설소음의 면역학적 영향)

  • Choi, Kwang-Min;Joo, Min-Soo;Kang, Gyoungsik;Woo, Won-Sik;Kim, Kyung Ho;Son, Min-Young;Jeong, Son Ha;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.243-248
    • /
    • 2021
  • Offshore wind power generation is an energy generation field that is rapidly developing owing to the increasing demand for clean energy. However, the physiological response of fish to the underwater noise generated during construction or operation of wind turbines is unclear. We confirmed the effects of sound pressures of 125, 135, 145, and 155 dB/µPa, including 140 dB/µPa (the standard sound pressure for noise damage recognition in South Korea), through serum analysis in rock bream (Oplegnathus fasciatus). High mortality induced by reduced immunity through artificial infection after stimulation was confirmed. These results suggest that rock bream is negatively affected by the noise generated during the construction of offshore wind power plants.

Tank colours do not change the effects of extreme temperatures on the productive parameters, but skeletal deformities of golden trevally

  • Van Manh Ngo;Khuong V. Dinh;Bich Lien Chau;Diep Minh Luc
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.8
    • /
    • pp.461-469
    • /
    • 2023
  • The objective of this study was to evaluate how the tank colours may change the effects of extreme temperature on the survival, growth, and quality of juvenile golden trevally (Gnathanodon speciosus). The experiment was set up with fifteen treatments of five tank colours (blue, red, yellow, grey, and white) and three temperatures (30℃, 32℃, 34℃) with three replications. Fish performance was assessed for four weeks. The results showed that tank colours and elevated temperatures affected the quality of golden trevally juveniles. The survival and growth rate of fish tend to decrease gradually, but the deformation rate of fish tended to increase in the order of tank colours: red, yellow > grey, blue, and white. The growth and survival rate of fish gradually decreased when the rearing temperature increased from 30℃ to 34℃ and this effect was independent of tank colors. Importantly, the deformation rate increased under elevated temperature, particularly in blue and white tanks with potential long-term effects. It is, therefore, not recommended to use blue and white tanks for rearing the golden trevally juveniles, particularly during extremely high temperatures from heatwave events.

Determining the optimal range of vitamin C for early red drum (Sciaenops ocellatus) juveniles

  • Nguyen Thi Thuy;Khuong V. Dinh;Ngo Van Manh;Trung Si Trang
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.9
    • /
    • pp.525-534
    • /
    • 2023
  • Vitamin C plays an important role for fish survival, growth and disease resistance. However, the optimal vitamin C for rearing red drum Sciaenops ocellatus juveniles in Vietnam is not known. To address this issue, a 70-day feeding trial was conducted to evaluate the optimal dietary vitamin C requirements for red drum juveniles. Seven isonitrogenous (55.35% protein) and isolipidic (9.07% lipid) diets were formulated to include graded vitamin C concentrations of 23.2, 124.5, 235.2, 423.8, 626.7, 824.6, and 1,027.3 mg/kg, respectively. The results showed that fish fed on 423.8 mg/kg vitamin C diet had the highest growth rate, which can be linked to the increased feed utilization. Broken-line analysis indicated that the optimal dietary vitamin C requirements of red drum juveniles were 342.92 and 405.80 mg/kg for growth parameters, feed utilization, body composition and biochemical parameters of serum. Based on these parameters the optimal vitamin C supplementation level for red drum juveniles was estimated in the range of 342.92-405.80 mg/kg vitamin C in the diets with direct applications in producing artificial feed for rearing juveniles of this species in Vietnam.

Recirculating Aquaculture System Design and Water Treatment Analysis based on CFD Simulation

  • Juhyoung Sung;Sungyoon Cho;Wongi Jeon;Yangseob Kim;Kiwon Kwon;Deuk-young Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3083-3098
    • /
    • 2023
  • As demands for efficient and echo-friendly production of marine products increase, smart aquaculture based on information and communication technology (ICT) has become a promising trend. The smart aquaculture is expected to control fundamental farm environment variables including water temperature and dissolved oxygen (DO) levels with less human intervention. A recirculating aquaculture system (RAS) is required for the smart aquaculture which utilizes a purification tank to reuse water drained from the water tank while blocking the external environment. Elaborate water treatment should be considered to properly operate RAS. However, analyzing the water treatment performance is a challenging issue because fish farm circumstance continuously changes and recursively affects water fluidity. To handle this issue, we introduce computational fluid dynamics (CFD) aided water treatment analysis including water fluidity and the solid particles removal efficiency. We adopt RAS parameters widely used in the real aquaculture field to better reflect the real situation. The simulation results provide several indicators for users to check performance metrics when planning to select appropriate RAS without actually using it which costs a lot to operate.

Potential Influence of Climate Change on Shellfish Aquaculture System in the Temperate Region

  • Jo, Qtae;Hur, Young Baek;Cho, Kee Chae;Jeon, Chang Young;Lee, Deok Chan
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2012
  • Aquaculture is challenged by a number of constraints with future efforts towards sustainable production. Global climate change has a potential damage to the sustainability by changing environmental surroundings unfavorably. The damaging parameters identified are water temperature, sea level, surface physical energy, precipitation, solar radiation, ocean acidification, and so on. Of them, temperature, mostly temperature elevation, occupies significant concern among marine ecologists and aquaculturists. Ocean acidification particularly draws shellfish aquaculturists' attention as it alters the marine chemistry, shifting the equilibrium towards more dissolved CO2 and hydrogen ions ($H^+$) and thus influencing signaling pathways on shell formation, immune system, and other biological processes. Temperature elevation by climate change is of double-sidedness: it can be an opportunistic parameter besides being a generally known damaging parameter in aquaculture. It can provide better environments for faster and longer growth for aquaculture species. It is also somehow advantageous for alleviation of aquaculture expansion pressure in a given location by opening a gate for new species and aquaculture zone expansion northward in the northern hemisphere, otherwise unavailable due to temperature limit. But in the science of climate change, the ways of influence on aquaculture are complex and ambiguous, and hence are still hard to identify and quantify. At the same time considerable parts of our knowledge on climate change effects on aquaculture are from the estimates from data of fisheries and agriculture. The consequences may be different from what they really are, particularly in the temperature region. In reality, bivalves and tunicates hung or caged in the longline system are often exposed to temperatures higher than those they encounter in nature, locally driving the farmed shellfish into an upper tolerable temperature extreme. We review recent climate change and following environment changes which can be factors or potential factors affecting shellfish aquaculture production in the temperate region.

Establishment of Integrated Health Evaluation Criteria for Coastal Aquaculture System (살포식 패류 양식어장 건강도 평가기준 설정)

  • Young-Shin Go;Dong-Hun Lee;Young-Jae Lee;Won-Chan Lee;Un-Ki Hwang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.462-472
    • /
    • 2023
  • We investigated the physio-chemical and geochemical parameters in the spraying shellfish aquacultures (Yeoja and Gangjin Bay) to establish the systematic strategy for effective environmental management. Spatial variation of each parameter showed partially significant difference (P<0.05) between Yeoja and Ganjin Bay, inferring the discriminative progress (i.e., accumulation and degradation) of the autochthonous organic matter within the aquaculture environments. We additionally integrated various properties (e.g., water/sediment quality, natural hazard, and biological health) which may affect the biological growth within the aquaculture habitats based on the biogeochemical cycles related to environmental components and aquaculture species. We used a screening approach (i.e., one out-all out; OOAO) which can permit the assessment of the health levels of aquaculture species, the scoring for other parameters (seawater, sediment, and natural hazard) as three levels (excellent, moderate and poor) depending on the complex interactive properties occurring in the aquaculture environments. Actual, discriminative scores obtained via our case studies may confirm that these stepwise processes are effectively evaluated for optimal health conditions within the aquaculture habitats. Thus, this approach may provide valuable insights for effective environmental management and sustainable growth of aquaculture operation.

A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture - (일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로)

  • 송정헌
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF