• Title/Summary/Keyword: AQUA satellite

Search Result 89, Processing Time 0.025 seconds

Assessment of the Near Real-Time Validation for the AQUA Satellite Level-2 Observation Products

  • Yang Min-Sil;Lee Jeongsoon;Lee Chol;Park Jong-Seo;Kim Hee-Ah
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.35-38
    • /
    • 2004
  • We developed a Near Real-Time Validation System (NRVS) for the Level-2 Products of AQUA Satellite. AQUA satellite is the second largest project of Earth Observing System (EOS) mission of NASA. This satellite provides the information of water cycle of the entire earth with many different forms. Among its products, we have used five kinds of level-2 geophysical parameters containing rain rate, sea surface wind speed, skin surface temperature, atmospheric temperature profile, and atmospheric humidity profile. To use these products in a scientific purpose, reasonable quantification is indispensable. In this paper we explain the near real-time validation system process and its detail algorithm. Its simulation results are also analyzed in a quantitative way. As reference data set in-situ measured meteorological data which are periodically gathered and provided by the Korea Meteorological Administration (KMA) is processed. Not only site-specific analysis but also time-series analysis of the validation results are explained and detail algorithms are described.

  • PDF

Development of Processing System of the Direct-broadcast Data from the Atmospheric Infrared Sounder (AIRS) on Aqua Satellite

  • Lee Jeongsoon;Kim Moongyu;Lee Chol;Yang Minsil;Park Jeonghyun;Park Jongseo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.371-382
    • /
    • 2005
  • We present a processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy of radiosonde (1 K in 1-km layer for temperature and $10\%$ in 2-km layer for humidity). The core of the processor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction for generation of Level 1 brightness temperature and Level 2 geophysical parameters retrieval. The processor can produce automatically from received raw data to Level 2 geophysical parameters. As we process the direct-broadcast data almost for the first time among the AIRS direct-broadcast community, a special attention is paid to understand and verify the Level 2 products. This processor includes sub-systems, that is, the near real time validation system which made the comparison results with in-situ measurement data, and standard digital information system which carry out the data format conversion into GRIdded Binary II (GRIB II) standard format to promote active data communication between meteorological societies. This processing system is planned to encourage the application of geophysical parameters observed by AIRS to research the aqua cycle in the Korean peninsula.

Brightness Temperature Retrieval using Direct Broadcast Data from the Passive Microwave Imager on Aqua Satellite

  • Kim, Seung-Bum;Im, Yong-Jo;Kim, Kum-Lan;Park, Hye-Sook;Park, Sung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • We have constructed a level-1 processor to generate brightness temperatures using the direct-broadcast data from the passive microwave radiometer onboard Aqua satellite. Although 50-minute half-orbit data, called a granule, are being routinely produced by global data centers, to our knowledge, this is the first attempt to process 10-minute long direct-broadcast (DB) data. We found that the processor designed for a granule needs modification to apply to the DB data. The modification includes the correction to path number, the selection of land mask and the manipulation of dummy scans. Pixel-to-pixel comparison with a reference indicates the difference in brightness temperature of about 0.2 K rms and less than 0.05 K mean. The difference comes from the different length of data between 50-minute granule and about 10-minute DB data. In detail, due to the short data length, DB data do not always have correct cold sky mirror count. The DB processing system is automated to enable the near-real time generation of brightness temperatures within 5 minutes after downlink. Through this work, we would be able to enhance the use of AMSR-E data, thus serving the objective of direct-broadcast.

INTERCALIBRATION OF THE MTSAT-IR INFRARED CHANNELS WITH A POLAR ORBIT SATELLITE

  • Chung, Sung-Rae;Sohn, Eun-Ha;Ahn, Myoung-Hwan;Ou, Milim;Kim, Mee-Ja
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.554-556
    • /
    • 2005
  • Meteorological imager on the Multi-functional Transport Satellite (MTSAT-IR), which has been operating formally since 28 June 2005, was intercalibrated with a polar orbit satellite [Aqua Moderate Resolution Imaging Spectroradiometer (Aqua/MODIS)] as a well-calibrated instrument. The intercalibration method used in this study was developed by the Cooperative Institute for Meteorological Satellite Studies (CIMSS). This was done for the infrared window channels. The differences of MTSAT-IR and MODIS were are -0.26 K for $11\;\mu m-IR$ window channel, 0.40 K for $12\;\mu m-IR$, window channel, and -0.67 K for $6.7\;\mu m-water$ vapor channel.

  • PDF

NASA EOS DB Receiving System Development by KARI

  • Ahn, Sang-Il;Koo, In-Hoi;Yang, Hyung-Mo;Hyun, Dae-Hwan;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Recently, KARI implemented the receiving and processing system for MODIS sensor data from NASA EOS satellites (TERRA and AQUA). This paper shows the development strategy considered, system requirement derived, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of pass operations activities from RF signal reception to level-1 processing.

CONSTRUCTION OF AMSR-E LEVEL-1 PROCESSOR AND RETRIEVAL OF OCEAN PARAMETERS

  • Kim, Seung-Bum;Shin, Ji-Hyun;Im, Yong-Jo;Shin, Ji-Hyun;Park, Sung-Oak;Park, Seung-Hwan;Lee, Jong-Ju;Kim, Moon-Gyu;Park, Hae-Suk;Kim, Keum-Ran
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.828-830
    • /
    • 2003
  • We have constructed a level-1 processor to generate brightness temperatures using the direct-broadcast data from the passive microwave radiometer onboard Aqua satellite. Although 50-minute half-orbit data, called a granule, are being routinely produced, to our knowledge, this is the first attempt to process about 10-minute long direct-broadcast data. We modified the processor designed for a granule to process the direct-broadcast data. After the modification, our brightness temperature product differs from the reference by 0.2K rms. Sea surface temperatures are retrieved to demonstrate the utility of AMSR-E.

  • PDF

Availability of Land Surface Temperature from the COMS in the Korea Peninsula (한반도에서의 천리안 위성 지표면 온도 유용성 평가)

  • Baek, Jong-Jin;Choi, Min-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.755-765
    • /
    • 2012
  • The Land Surface Temperature (LST) is one of the significant factors to understand the water and energy cycles between the land surface and atmosphere. However, few previous studies for spatio-temporal variations of LST has been investigated. In this study, we conducted comparative analyses between the Communication, Ocean and Meteorological Satellite (COMS) and MOderate-Resolution Imaging Spectroradiometer (MODIS) LST data. We compared COMS data with observations to identify the accuracy and found relative underestimated patterns of the COMS data as compared to observations. We also found that COMS LST were underestimated in compare to MODIS LST. The Terra LST was verified to have more similar trends with the COMS LST rather than Aqua LST. While we identified the applicability of COMS based on the results of similar tendencies of two comparisons, more intensive validation research at a variety of field conditions should be conducted to gurantee current COMS LST.

Preprocessing of the Direct-broadcast Data from the Atmospheric Infared Sounder (AIRS) Sounding Suite on Aqua Satellite

  • Kim, Seungbum;Park, Hyesook;Kim, Kumlan;Park, Seunghwan;Kim, Moongyu;Lee, Jongju
    • Atmosphere
    • /
    • v.13 no.4
    • /
    • pp.71-79
    • /
    • 2003
  • We present a pre processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy [s1]of a radiosonde (1 K in 1-km layer for temperature and 10% in 2-km layer for humidity). The core of the pre p rocessor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction to compute the Earth's radiance. Then we remove spurious data and retrieve the brightness temperature (Tb). Since we process the direct-broadcast data almost for the first time among the AIRS directbroadcast community, special attention is needed to understand and verify the products. This includes the pixel-to-pixel verification of the direct-broadcast product with reference to the fullorbit product, which shows the difference of less than $10^{-3}$ K in IR Tb.

UPWELLING FILAMENTS AND THEIR ROLE IN CROSSFRONTAL WATER EXCHANGE

  • Kostianoy, A.G.;Soloviev, D.M.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.954-957
    • /
    • 2006
  • Satellite data (thermal and color imagery) show that offshore flowing filaments off the west coasts of North America, North and South Africa can influence significantly the cross-frontal mixing in the coastal upwelling zones. To evaluate this role, we investigated structure, dynamics and behavior of surface filaments in the Canary and Benguela upwelling regions on the base of daily satellite IR and VIS imagery (AVHRR NOAA, MODIS-Aqua). It was found that seasonal variability of the filaments location depends on intra-annual shift of general upwelling intensity along the coast. The main statistical characteristics of filaments - length, width, temperature anomaly and estimates of velocity were obtained. Estimates of cross-frontal water exchange due to filamentation based on the statistical data show that these coherent structures play a major role in the water and particle exchange between coastal zone and the open ocean in both upwelling regions.

  • PDF